IDEAS home Printed from https://ideas.repec.org/a/sae/compsc/v28y2011i1p41-64.html
   My bibliography  Save this article

Real Time, Time Series Forecasting of Inter- and Intra-State Political Conflict

Author

Listed:
  • Patrick T. Brandt

    (School of Economic, Political and Policy Sciences, University of Texas, Dallas)

  • John R. Freeman

    (Department of Political Science, University of Minnesota)

  • Philip A. Schrodt

    (Department of Political Science, The Pennsylvania State University)

Abstract

We propose a framework for forecasting and analyzing regional and international conflicts. It generates forecasts that (1) are accurate but account for uncertainty, (2) are produced in (near) real time, (3) capture actors’ simultaneous behaviors, (4) incorporate prior beliefs, and (5) generate policy contingent forecasts. We combine the CAMEO event-coding framework with Markov-switching and Bayesian vector autoregression models to meet these goals. Our example produces a series of forecasts for material conflict between the Israelis and Palestinians for 2010. Our forecast is that the level of material conflict between these belligerents will increase in 2010, compared to 2009.

Suggested Citation

  • Patrick T. Brandt & John R. Freeman & Philip A. Schrodt, 2011. "Real Time, Time Series Forecasting of Inter- and Intra-State Political Conflict," Conflict Management and Peace Science, Peace Science Society (International), vol. 28(1), pages 41-64, February.
  • Handle: RePEc:sae:compsc:v:28:y:2011:i:1:p:41-64
    DOI: 10.1177/0738894210388125
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0738894210388125
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0738894210388125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerald Schneider & Daniel Finke & Stefanie Bailer, 2010. "Bargaining Power in the European Union: An Evaluation of Competing Game‐Theoretic Models," Political Studies, Political Studies Association, vol. 58(1), pages 85-103, February.
    2. Jack A. Goldstone & Robert H. Bates & David L. Epstein & Ted Robert Gurr & Michael B. Lustik & Monty G. Marshall & Jay Ulfelder & Mark Woodward, 2010. "A Global Model for Forecasting Political Instability," American Journal of Political Science, John Wiley & Sons, vol. 54(1), pages 190-208, January.
    3. Francis X. Diebold & Anthony S. Tay & Kenneth F. Wallis, 1997. "Evaluating Density Forecasts of Inflation: The Survey of Professional Forecasters," NBER Working Papers 6228, National Bureau of Economic Research, Inc.
    4. Clive W. J. Granger, 2005. "Preface: Some Thoughts on the Future of Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 707-711, December.
    5. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    6. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    7. Bruce Bueno de Mesquita, 1997. "A decision making model: Its structure and form," International Interactions, Taylor & Francis Journals, vol. 23(3-4), pages 235-266, May.
    8. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    9. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    10. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    11. Tilmann Gneiting, 2008. "Editorial: Probabilistic forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 319-321, April.
    12. Kling, John L & Bessler, David A, 1989. "Calibration-Based Predictive Distributions: An Application of Prequential Analysis to Interest Rates, Money, Prices, and Output," The Journal of Business, University of Chicago Press, vol. 62(4), pages 477-499, October.
    13. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    14. Gerald Schneider & Daniel Finke & Stefanie Bailer, 2010. "Bargaining Power in the European Union: An Evaluation of Competing Game-Theoretic Models," Political Studies, Political Studies Association, vol. 58, pages 85-103, February.
    15. Schrodt, Philip A. & Gerner, Deborah J., 2000. "Cluster-Based Early Warning Indicators for Political Change in the Contemporary Levant," American Political Science Review, Cambridge University Press, vol. 94(4), pages 803-817, December.
    16. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    17. Goldstein, Joshua S. & Pevehouse, Jon C., 1997. "Reciprocity, Bullying, and International Cooperation: Time-series Analysis of the Bosnia Conflict," American Political Science Review, Cambridge University Press, vol. 91(3), pages 515-529, September.
    18. Beck, Nathaniel & King, Gary & Zeng, Langche, 2000. "Improving Quantitative Studies of International Conflict: A Conjecture," American Political Science Review, Cambridge University Press, vol. 94(1), pages 21-35, March.
    19. Dixon, William J., 1996. "Third-party techniques for preventing conflict escalation and promoting peaceful settlement," International Organization, Cambridge University Press, vol. 50(4), pages 653-681, October.
    20. Brandt, Patrick T. & Freeman, John R., 2009. "Modeling Macro-Political Dynamics," Political Analysis, Cambridge University Press, vol. 17(2), pages 113-142, April.
    21. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    22. Brandt, Patrick T. & Freeman, John R., 2006. "Advances in Bayesian Time Series Modeling and the Study of Politics: Theory Testing, Forecasting, and Policy Analysis," Political Analysis, Cambridge University Press, vol. 14(1), pages 1-36, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mueller, Hannes & Rauh, Christopher, 2018. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," American Political Science Review, Cambridge University Press, vol. 112(2), pages 358-375, May.
    2. De Palma André & Perali Federico & Picard Nathalie & Ricciuti Roberto & Scorbureanu Alexandrina, 2013. "Social Crisis Prevention: A Political Alert Index for the Israel-Palestine Conflict," Peace Economics, Peace Science, and Public Policy, De Gruyter, vol. 19(2), pages 103-122, August.
    3. Brandt, Patrick T. & Freeman, John R. & Schrodt, Philip A., 2014. "Evaluating forecasts of political conflict dynamics," International Journal of Forecasting, Elsevier, vol. 30(4), pages 944-962.
    4. Joshi, Devin K. & Hughes, Barry B. & Sisk, Timothy D., 2015. "Improving Governance for the Post-2015 Sustainable Development Goals: Scenario Forecasting the Next 50years," World Development, Elsevier, vol. 70(C), pages 286-302.
    5. Ore Koren, 2017. "Hunger Games: Food Security and Strategic Preemptive Conflict," HiCN Working Papers 253, Households in Conflict Network.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandt, Patrick T. & Freeman, John R. & Schrodt, Philip A., 2014. "Evaluating forecasts of political conflict dynamics," International Journal of Forecasting, Elsevier, vol. 30(4), pages 944-962.
    2. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    3. Refet Gürkaynak & Justin Wolfers, 2005. "Macroeconomic Derivatives: An Initial Analysis of Market-Based Macro Forecasts, Uncertainty, and Risk," NBER Chapters, in: NBER International Seminar on Macroeconomics 2005, pages 11-50, National Bureau of Economic Research, Inc.
    4. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    5. Lucio Sarno, 2003. "Nonlinear Exchange Rate Models: A Selective Overview," Rivista di Politica Economica, SIPI Spa, vol. 93(4), pages 3-46, July-Augu.
    6. Polanski, Arnold & Stoja, Evarist, 2012. "Efficient evaluation of multidimensional time-varying density forecasts, with applications to risk management," International Journal of Forecasting, Elsevier, vol. 28(2), pages 343-352.
    7. Shamiri, Ahmed & Shaari, Abu Hassan & Isa, Zaidi, 2007. "Practical Volatility Modeling for Financial Market Risk Management," MPRA Paper 9790, University Library of Munich, Germany, revised 15 May 2008.
    8. Gerald Schneider & Nils Petter Gleditsch & Sabine Carey, 2011. "Forecasting in International Relations," Conflict Management and Peace Science, Peace Science Society (International), vol. 28(1), pages 5-14, February.
    9. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    10. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    11. Li, Yushu & Andersson, Jonas, 2014. "A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting," Discussion Papers 2014/12, Norwegian School of Economics, Department of Business and Management Science.
    12. Yushu Li & Jonas Andersson, 2020. "A likelihood ratio and Markov chain‐based method to evaluate density forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 47-55, January.
    13. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1998. "Real-Time Multivariate Density Forecast Evaluation and Calibration: Monitoring the Risk of High-Frequency Returns on Foreign Exchange," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-079, New York University, Leonard N. Stern School of Business-.
    14. Polanski, Arnold & Stoja, Evarist & Zhang, Ren, 2013. "Multidimensional risk and risk dependence," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3286-3294.
    15. Pesaran, M. Hashem & Schleicher, Christoph & Zaffaroni, Paolo, 2009. "Model averaging in risk management with an application to futures markets," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 280-305, March.
    16. Corradi, Valentina & Swanson, Norman R., 2006. "Bootstrap conditional distribution tests in the presence of dynamic misspecification," Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
    17. Gabriela De Raaij & Burkhard Raunig, 2005. "Evaluating density forecasts from models of stock market returns," The European Journal of Finance, Taylor & Francis Journals, vol. 11(2), pages 151-166.
    18. Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
    19. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    20. Wallis, Kenneth F., 2003. "Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 165-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:compsc:v:28:y:2011:i:1:p:41-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://pss.la.psu.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.