IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v19y2024ip185-191..html
   My bibliography  Save this article

Investigation and thermo-economic analysis of solar condensation refrigeration

Author

Listed:
  • Azher M Abed
  • Salema K Hadrawi
  • Ghassan F Smaisim
  • Ali F Muftah
  • Farnaz Jahanbin

Abstract

Today, the use of solar energy is expanding and developing because this energy is easily available and there are various technologies for producing thermal and electrical energy and cooling. One of the most energy-consuming parts is heating and cooling systems in residential buildings, which include the major part of energy consumption in buildings. Therefore, the purpose of this research is to produce thermal energy for the cooling system using solar energy, which was used for analysis using Trnsys software. The purpose of the simulation is to check the thermodynamic parameters of the fluid and economic analysis, taking into account biological pollutants. The environment of the system has been considered. One of the important results of this research is the return on investment of 4 years, in which the required amount of energy supply through the solar system is 0.94.

Suggested Citation

  • Azher M Abed & Salema K Hadrawi & Ghassan F Smaisim & Ali F Muftah & Farnaz Jahanbin, 2024. "Investigation and thermo-economic analysis of solar condensation refrigeration," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 19, pages 185-191.
  • Handle: RePEc:oup:ijlctc:v:19:y:2024:i::p:185-191.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac103
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghassan F. Smaisim & Azher M. Abed & Ali Shamel & Wenjie Lu, 2022. "Modeling the Thermal Performance for Different Types of Solar Chimney Power Plants," Complexity, Hindawi, vol. 2022, pages 1-10, July.
    2. Reza Alayi & Mehdi Jahangiri & Atabak Najafi, 2021. "Energy analysis of vacuum tube collector system to supply the required heat gas pressure reduction station [Recent advances on nanofluids for low to medium temperature solar collectors: energy, exe," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(4), pages 1391-1396.
    3. Reza Alayi & Andrey Sevbitov & Mamdouh El Haj Assad & Ravil Akhmadeev & Mikhail Kosov, 2022. "Investigation of energy and economic parameters of photovoltaic cells in terms of different tracking technologies [Technical and environmental analysis of photovoltaic and solar water heater cogene," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 447-453.
    4. Reza Alayi & Ravinder Kumar & Syed Reza Seydnouri & Mohammad Hossein Ahmadi & Alibek Issakhov, 2021. "Energy, environment and economic analyses of a parabolic trough concentrating photovoltaic/thermal system [The moderating effects of urbanization on carbon dioxide emissions: a latent class modelin," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(2), pages 570-576.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Alayi & Mahdi Mohkam & Seyed Reza Seyednouri & Mohammad Hossein Ahmadi & Mohsen Sharifpur, 2021. "Energy/Economic Analysis and Optimization of On-Grid Photovoltaic System Using CPSO Algorithm," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    2. Qi Fang & Shaoping Li & Hadi Fooladi, 2022. "Parametric layout and performance examination of a novel energy process based on the renewable energies and thermodynamic cycles [A hybrid-electric propulsion system for an unmanned aerial vehicle ," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1000-1011.
    3. Naseer T Alwan & Milia H Majeed & Ihsan M Khudhur & S E Shcheklein & Obed M Ali & Salam J Yaqoob & Reza Alayi, 2022. "Assessment of the performance of solar water heater: an experimental and theoretical investigation [Analysis of a proper strategy for solar energy deployment in Iran using SWOT matrix]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 528-539.
    4. Tzu-Chia Chen & José Ricardo Nuñez Alvarez & Ngakan Ketut Acwin Dwijendra & Zainab Jawad Kadhim & Reza Alayi & Ravinder Kumar & Seepana PraveenKumar & Vladimir Ivanovich Velkin, 2023. "Modeling and Optimization of Combined Heating, Power, and Gas Production System Based on Renewable Energies," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    5. Reza Alayi & Mehdi Jahangiri & Atabak Najafi, 2021. "Energy analysis of vacuum tube collector system to supply the required heat gas pressure reduction station [Recent advances on nanofluids for low to medium temperature solar collectors: energy, exe," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(4), pages 1391-1396.
    6. MaryamNooman AlMallahi & Mamdouh El Haj Assad & Sameh AlShihabi & Reza Alayi, 2022. "Multi-criteria decision-making approach for the selection of cleaning method of solar PV panels in United Arab Emirates based on sustainability perspective [Mind the gap: a social sciences review o," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 380-393.
    7. Osama A. Marzouk, 2024. "Energy Generation Intensity (EGI) of Solar Updraft Tower (SUT) Power Plants Relative to CSP Plants and PV Power Plants Using the New Energy Simulator “Aladdin”," Energies, MDPI, vol. 17(2), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:19:y:2024:i::p:185-191.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.