IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v26y2023i3pc31-c66..html
   My bibliography  Save this article

Simple approaches to nonlinear difference-in-differences with panel data

Author

Listed:
  • Jeffrey M Wooldridge

Abstract

SummaryI derive simple, flexible strategies for difference-in-differences settings where the nature of the response variable may warrant a nonlinear model. I allow for general staggered interventions, with and without covariates. Under an index version of parallel trends, I show that average treatment effects on the treated (ATTs) are identified for each cohort and calendar time period in which a cohort was subjected to the intervention. The pooled quasi-maximum likelihood estimators in the linear exponential family extend pooled ordinary least squares estimation of linear models. By using the conditional mean associated with the canonical link function, imputation and pooling across the entire sample produce identical estimates. Generally, pooled estimation results in very simple computation of the ATTs and their standard errors. The leading cases are a logit functional form for binary and fractional outcomes—combined with the Bernoulli quasi-log likelihood (QLL)—and an exponential mean combined with the Poisson QLL.

Suggested Citation

  • Jeffrey M Wooldridge, 2023. "Simple approaches to nonlinear difference-in-differences with panel data," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 31-66.
  • Handle: RePEc:oup:emjrnl:v:26:y:2023:i:3:p:c31-c66.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ectj/utad016
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wooldridge, Jeffrey M., 1999. "Distribution-free estimation of some nonlinear panel data models," Journal of Econometrics, Elsevier, vol. 90(1), pages 77-97, May.
    2. Martin, Robert S., 2017. "Estimation of average marginal effects in multiplicative unobserved effects panel models," Economics Letters, Elsevier, vol. 160(C), pages 16-19.
    3. Clément de Chaisemartin & Xavier D'Haultfœuille, 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, American Economic Association, vol. 110(9), pages 2964-2996, September.
    4. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    5. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    6. Papke, Leslie E. & Wooldridge, Jeffrey M., 2008. "Panel data methods for fractional response variables with an application to test pass rates," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 121-133, July.
    7. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    8. Clément de Chaisemartin & Xavier D’Haultfœuille, 2023. "Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: a survey," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 1-30.
    9. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    10. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    11. Puhani, Patrick A., 2012. "The treatment effect, the cross difference, and the interaction term in nonlinear “difference-in-differences” models," Economics Letters, Elsevier, vol. 115(1), pages 85-87.
    12. Jeffrey M. Wooldridge, 2005. "Fixed-Effects and Related Estimators for Correlated Random-Coefficient and Treatment-Effect Panel Data Models," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 385-390, May.
    13. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    14. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    15. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    16. Brian Bell & Richard Blundell & John Reenen, 1999. "Getting the Unemployed Back to Work: The Role of Targeted Wage Subsidies," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 6(3), pages 339-360, August.
    17. Akanksha Negi & Jeffrey M. Wooldridge, 2021. "Revisiting regression adjustment in experiments with heterogeneous treatment effects," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 504-534, April.
    18. Ai, Chunrong & Norton, Edward C., 2003. "Interaction terms in logit and probit models," Economics Letters, Elsevier, vol. 80(1), pages 123-129, July.
    19. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    20. Riju Joshi & Jeffrey M. Wooldridge, 2019. "Correlated Random Effects Models with Endogenous Explanatory Variables and Unbalanced Panels," Annals of Economics and Statistics, GENES, issue 134, pages 243-268.
    21. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    22. Jonathan Roth & Pedro H. C. Sant'Anna, 2023. "When Is Parallel Trends Sensitive to Functional Form?," Econometrica, Econometric Society, vol. 91(2), pages 737-747, March.
    23. Jaap H. Abbring & Gerard J. van den Berg, 2003. "The Nonparametric Identification of Treatment Effects in Duration Models," Econometrica, Econometric Society, vol. 71(5), pages 1491-1517, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masserini, Lucio & Bini, Matilde & Lorenzoni, Valentina, 2024. "The effect of pricing policies on students’ use of university canteens," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    2. Castet, Antoine, 2024. "The impact of large-scale land acquisitions on child food insecurity in Africa," World Development, Elsevier, vol. 179(C).
    3. Yadav, Anil & McHale, John & Harold, Jason & O'Neill, Stephen, 2024. "Estimating effects of staggered intervention with count and binary outcomes: a simulation study," Research Technical Papers 4/RT/24, Central Bank of Ireland.
    4. Christian Peukert & Florian Abeillon & Jérémie Haese & Franziska Kaiser & Alexander Staub, 2024. "Strategic Behavior and AI Training Data," CESifo Working Paper Series 11099, CESifo.
    5. Christian Peukert & Florian Abeillon & J'er'emie Haese & Franziska Kaiser & Alexander Staub, 2024. "Strategic Behavior and AI Training Data," Papers 2404.18445, arXiv.org.
    6. Baraldi, Anna Laura & Papagni, Erasmo & Stimolo, Marco, 2024. "Neutralizing the tentacles of organized crime. Assessment of the impact of an anti-crime measure on mafia violence in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 223(C), pages 57-85.
    7. Khambai Khamjalas, 2024. "Nexuses between Food, Energy, and Water Consumption on Urban-Rural Income Gap in South-Eastern Asian Countries Using Difference in Difference in Modelling Technique," International Journal of Economics and Financial Issues, Econjournals, vol. 14(2), pages 186-195, March.
    8. Cao, Hongjian & Zhao, Yu & Yuan, Li & Li, Ke, 2024. "Does legislation promote technological innovation in renewable energy enterprises? Evidence from China," Energy Policy, Elsevier, vol. 188(C).
    9. Ben Deaner & Hyejin Ku, 2024. "Causal Duration Analysis with Diff-in-Diff," Papers 2405.05220, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    2. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    3. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    4. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    5. Gregory Faletto, 2023. "Fused Extended Two-Way Fixed Effects for Difference-in-Differences With Staggered Adoptions," Papers 2312.05985, arXiv.org, revised Oct 2024.
    6. Kyunghoon Ban & D'esir'e K'edagni, 2022. "Robust Difference-in-differences Models," Papers 2211.06710, arXiv.org, revised Aug 2023.
    7. Ridwan Ah Sheikh & Sunil Kanwar, 2024. "Revisiting the Impact of TRIPS on IPR-intensive Export Flows: Evidence from Staggered Difference-in-Differences," Working papers 351, Centre for Development Economics, Delhi School of Economics.
    8. Dalia Ghanem & Pedro H. C. Sant'Anna & Kaspar Wuthrich, 2022. "Selection and parallel trends," Papers 2203.09001, arXiv.org, revised Mar 2024.
    9. Callaway, Brantly & Li, Tong, 2023. "Policy evaluation during a pandemic," Journal of Econometrics, Elsevier, vol. 236(1).
    10. Yadav, Anil & McHale, John & Harold, Jason & O'Neill, Stephen, 2024. "Estimating effects of staggered intervention with count and binary outcomes: a simulation study," Research Technical Papers 4/RT/24, Central Bank of Ireland.
    11. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    12. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    13. Isabelle Chort & Berk Öktem, 2024. "Agricultural shocks, coping policies and deforestation: Evidence from the coffee leaf rust epidemic in Mexico," American Journal of Agricultural Economics, John Wiley & Sons, vol. 106(3), pages 1020-1057, May.
    14. Cl'ement de Chaisemartin & Xavier D'Haultfoeuille & F'elix Pasquier & Doulo Sow & Gonzalo Vazquez-Bare, 2022. "Difference-in-Differences Estimators for Treatments Continuously Distributed at Every Period," Papers 2201.06898, arXiv.org, revised Jul 2024.
    15. Albanese, Andrea & Nieto, Adrián & Tatsiramos, Konstantinos, 2022. "Job Location Decisions and the Effect of Children on the Employment Gender Gap," GLO Discussion Paper Series 1113, Global Labor Organization (GLO).
    16. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    17. Andrea Albanese & Bart Cockx, 2015. "Permanent Wage Cost Subsidies For Older Workers. An Effective Tool For Increasing Working Time And Postponing Early Retirement?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 15/902, Ghent University, Faculty of Economics and Business Administration.
    18. Yajima, Naonari & Arimura, Toshi H., 2022. "Promoting energy efficiency in Japanese manufacturing industry through energy audits: Role of information provision, disclosure, target setting, inspection, reward, and organizational structure," Energy Economics, Elsevier, vol. 114(C).
    19. Baker, Andrew C. & Larcker, David F. & Wang, Charles C.Y., 2022. "How much should we trust staggered difference-in-differences estimates?," Journal of Financial Economics, Elsevier, vol. 144(2), pages 370-395.
    20. Shengwu Shang & Erik Nesson & Maoyong Fan, 2018. "Interaction Terms In Poisson And Log Linear Regression Models," Bulletin of Economic Research, Wiley Blackwell, vol. 70(1), pages 89-96, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:26:y:2023:i:3:p:c31-c66.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.