IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v045i04.html
   My bibliography  Save this article

Multiple Imputation by Chained Equations (MICE): Implementation in Stata

Author

Listed:
  • Royston, Patrick
  • White, Ian R.

Abstract

Missing data are a common occurrence in real datasets. For epidemiological and prognostic factors studies in medicine, multiple imputation is becoming the standard route to estimating models with missing covariate data under a missing-at-random assumption. We describe ice, an implementation in Stata of the MICE approach to multiple imputation. Real data from an observational study in ovarian cancer are used to illustrate the most important of the many options available with ice. We remark briefly on the new database architecture and procedures for multiple imputation introduced in releases 11 and 12 of Stata.

Suggested Citation

  • Royston, Patrick & White, Ian R., 2011. "Multiple Imputation by Chained Equations (MICE): Implementation in Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i04).
  • Handle: RePEc:jss:jstsof:v:045:i04
    DOI: http://hdl.handle.net/10.18637/jss.v045.i04
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v045i04/v45i04.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v045i04/ice.zip
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v045i04/v45i04-replication.zip
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v045i04/ovariancancer.dta
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v045i04/ovariancancer.xls.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v045.i04?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. White, Ian R. & Daniel, Rhian & Royston, Patrick, 2010. "Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2267-2275, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Bauer & Keven Ruby & Robert Pape, 2017. "Solving the Problem of Unattributed Political Violence," Journal of Conflict Resolution, Peace Science Society (International), vol. 61(7), pages 1537-1564, August.
    2. Martin, Eisele & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," MPRA Paper 57666, University Library of Munich, Germany.
    3. Caroline J. Dodd-Reynolds & Dimitris Vallis & Adetayo Kasim & Nasima Akhter & Coral L. Hanson, 2020. "The Northumberland Exercise Referral Scheme as a Universal Community Weight Management Programme: A Mixed Methods Exploration of Outcomes, Expectations and Experiences across a Social Gradient," IJERPH, MDPI, vol. 17(15), pages 1-21, July.
    4. Doidge, James C & Higgins, Daryl J & Delfabbro, Paul & Edwards, Ben & Vassallo, Suzanne & Toumbourou, John W & Segal, Leonie, 2017. "Economic predictors of child maltreatment in an Australian population-based birth cohort," Children and Youth Services Review, Elsevier, vol. 72(C), pages 14-25.
    5. Ferrari, Pier Alda & Annoni, Paola & Barbiero, Alessandro & Manzi, Giancarlo, 2011. "An imputation method for categorical variables with application to nonlinear principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2410-2420, July.
    6. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    7. Lars P. Feld & Sarah Necker & Bruno S. Frey, 2015. "Happiness of economists," Applied Economics, Taylor & Francis Journals, vol. 47(10), pages 990-1007, February.
    8. Ahmad R. Alsaber & Jiazhu Pan & Adeeba Al-Hurban, 2021. "Handling Complex Missing Data Using Random Forest Approach for an Air Quality Monitoring Dataset: A Case Study of Kuwait Environmental Data (2012 to 2018)," IJERPH, MDPI, vol. 18(3), pages 1-25, February.
    9. Templ, Matthias & Kowarik, Alexander & Filzmoser, Peter, 2011. "Iterative stepwise regression imputation using standard and robust methods," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2793-2806, October.
    10. Reza C. Daniels, 2012. "Univariate Multiple Imputation for Coarse Employee Income Data," SALDRU Working Papers 88, Southern Africa Labour and Development Research Unit, University of Cape Town.
    11. Morris A. Davis & William D. Larson & Stephen D. Oliner & Benjamin Smith, 2019. "Mortgage Risk Since 1990," FHFA Staff Working Papers 19-02, Federal Housing Finance Agency.
    12. Rabea Aschenbruck & Gero Szepannek & Adalbert F. X. Wilhelm, 2023. "Imputation Strategies for Clustering Mixed-Type Data with Missing Values," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 2-24, April.
    13. Williams, Randi M. & Zhang, Jing & Woodard, Nathaniel & Slade, Jimmie & Santos, Sherie Lou Zara & Knott, Cheryl L., 2020. "Development and validation of an instrument to assess institutionalization of health promotion in faith-based organizations," Evaluation and Program Planning, Elsevier, vol. 79(C).
    14. Mingyang Cai & Gerko Vink, 2022. "A note on imputing squares via polynomial combination approach," Computational Statistics, Springer, vol. 37(5), pages 2185-2201, November.
    15. Zhong, Hua & Hu, Wuyang & Penn, Jerrod M., 2018. "Application of Multiple Imputation in Dealing with Missing Data in Agricultural Surveys: The Case of BMP Adoption," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 43(1), January.
    16. repec:iab:iabfme:201202(en is not listed on IDEAS
    17. Jaenichen, Ursula & Sakshaug, Joseph, 2012. "Multiple imputation of household income in the first wave of PASS," FDZ Methodenreport 201202_en, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:045:i04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.