IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v69y2021i1p175-187.html
   My bibliography  Save this article

Technical Note—On Revenue Management with Strategic Customers Choosing When and What to Buy

Author

Listed:
  • Yiwei Chen

    (Department of Marketing and Supply Chain Management, Fox School of Business, Temple University, Philadelphia, Pennsylvania 19122)

  • Nikolaos Trichakis

    (Operations Research Center and Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

Consider a network revenue management model in which a seller offers multiple products, which consume capacitated resources. The seller uses an anonymous posted-price policy, and arriving customers strategize on (a) when and (b) which product to purchase to maximize their utility, based on heterogeneous product valuations. Such models, whereby customers are both forward looking and choose what to buy, have not yet been amenable to analysis, mainly because their associated dynamic mechanism design counterparts are multidimensional; that is, they involve constraints with multivariate private information (the product valuations). Within the context of the aforementioned model, we present a novel decomposition approach that enables us to deal with the underlying multidimensional mechanism design problem. Using this approach, we derive for all nonanticipating dynamic pricing policies an upper bound to expected revenues. We use our bound to conduct theoretical and numerical performance analyses of static pricing policies. In our theoretical analysis, we derive guarantees for the performance of static pricing, for the classical fluid-type regime where inventory and demand grow large. Our numerical analysis shows static pricing to be able capture at least 75%–90% of maximum possible expected revenue under a wide range of realistic problem parameters.

Suggested Citation

  • Yiwei Chen & Nikolaos Trichakis, 2021. "Technical Note—On Revenue Management with Strategic Customers Choosing When and What to Buy," Operations Research, INFORMS, vol. 69(1), pages 175-187, January.
  • Handle: RePEc:inm:oropre:v:69:y:2021:i:1:p:175-187
    DOI: 10.1287/opre.2020.2008
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2020.2008
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2020.2008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar Besbes & Assaf Zeevi, 2012. "Blind Network Revenue Management," Operations Research, INFORMS, vol. 60(6), pages 1537-1550, December.
    2. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2016. "Real-Time Dynamic Pricing with Minimal and Flexible Price Adjustment," Management Science, INFORMS, vol. 62(8), pages 2437-2455, August.
    3. Sumit Kunnumkal & Kalyan Talluri, 2016. "Technical Note—A Note on Relaxations of the Choice Network Revenue Management Dynamic Program," Operations Research, INFORMS, vol. 64(1), pages 158-166, February.
    4. Jérémie Gallien, 2006. "Dynamic Mechanism Design for Online Commerce," Operations Research, INFORMS, vol. 54(2), pages 291-310, April.
    5. Hongmin Li & Woonghee Tim Huh, 2011. "Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 549-563, October.
    6. Simon Board & Andrzej Skrzypacz, 2016. "Revenue Management with Forward-Looking Buyers," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1046-1087.
    7. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    8. Stefanus Jasin, 2014. "Reoptimization and Self-Adjusting Price Control for Network Revenue Management," Operations Research, INFORMS, vol. 62(5), pages 1168-1178, October.
    9. Dan Zhang, 2011. "An Improved Dynamic Programming Decomposition Approach for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 35-52, April.
    10. Ming Chen & Zhi-Long Chen, 2018. "Robust Dynamic Pricing with Two Substitutable Products," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 249-268, May.
    11. Goker Aydin & Evan L. Porteus, 2008. "Joint Inventory and Pricing Decisions for an Assortment," Operations Research, INFORMS, vol. 56(5), pages 1247-1255, October.
    12. Yiwei Chen & Vivek F. Farias, 2018. "Robust Dynamic Pricing with Strategic Customers," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1119-1142, November.
    13. Kalyan Talluri & Garrett van Ryzin, 1998. "An Analysis of Bid-Price Controls for Network Revenue Management," Management Science, INFORMS, vol. 44(11-Part-1), pages 1577-1593, November.
    14. Gustavo Vulcano & Garrett van Ryzin & Costis Maglaras, 2002. "Optimal Dynamic Auctions for Revenue Management," Management Science, INFORMS, vol. 48(11), pages 1388-1407, November.
    15. Said, Maher, 2012. "Auctions with dynamic populations: Efficiency and revenue maximization," Journal of Economic Theory, Elsevier, vol. 147(6), pages 2419-2438.
    16. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    17. Roger B. Myerson, 1981. "Optimal Auction Design," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 58-73, February.
    18. Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
    19. Yalç{i}n Akçay & Harihara Prasad Natarajan & Susan H. Xu, 2010. "Joint Dynamic Pricing of Multiple Perishable Products Under Consumer Choice," Management Science, INFORMS, vol. 56(8), pages 1345-1361, August.
    20. Mallesh M. Pai & Rakesh Vohra, 2013. "Optimal Dynamic Auctions and Simple Index Rules," Mathematics of Operations Research, INFORMS, vol. 38(4), pages 682-697, November.
    21. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    22. Jun Li & Nelson Granados & Serguei Netessine, 2014. "Are Consumers Strategic? Structural Estimation from the Air-Travel Industry," Management Science, INFORMS, vol. 60(9), pages 2114-2137, September.
    23. Stefanus Jasin & Sunil Kumar, 2012. "A Re-Solving Heuristic with Bounded Revenue Loss for Network Revenue Management with Customer Choice," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 313-345, May.
    24. Yossi Aviv & Amit Pazgal, 2008. "Optimal Pricing of Seasonal Products in the Presence of Forward-Looking Consumers," Manufacturing & Service Operations Management, INFORMS, vol. 10(3), pages 339-359, December.
    25. Constantinos Maglaras & Joern Meissner, 2006. "Dynamic Pricing Strategies for Multiproduct Revenue Management Problems," Manufacturing & Service Operations Management, INFORMS, vol. 8(2), pages 136-148, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiwei Chen & Vivek F. Farias & Nikolaos Trichakis, 2019. "On the Efficacy of Static Prices for Revenue Management in the Face of Strategic Customers," Management Science, INFORMS, vol. 65(12), pages 5535-5555, December.
    2. Yiwei Chen & Vivek F. Farias, 2018. "Robust Dynamic Pricing with Strategic Customers," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1119-1142, November.
    3. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    4. Vibhanshu Abhishek & Mustafa Dogan & Alexandre Jacquillat, 2021. "Strategic Timing and Dynamic Pricing for Online Resource Allocation," Management Science, INFORMS, vol. 67(8), pages 4880-4907, August.
    5. Yiwei Chen & Ming Hu, 2020. "Pricing and Matching with Forward-Looking Buyers and Sellers," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 717-734, July.
    6. Ilan Lobel, 2021. "Revenue Management and the Rise of the Algorithmic Economy," Management Science, INFORMS, vol. 67(9), pages 5389-5398, September.
    7. Pornpawee Bumpensanti & He Wang, 2020. "A Re-Solving Heuristic with Uniformly Bounded Loss for Network Revenue Management," Management Science, INFORMS, vol. 66(7), pages 2993-3009, July.
    8. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    9. Alex Gershkov & Benny Moldovanu & Philipp Strack, 2018. "Revenue-Maximizing Mechanisms with Strategic Customers and Unknown, Markovian Demand," Management Science, INFORMS, vol. 64(5), pages 2031-2046, May.
    10. Yiwei Chen & Cong Shi, 2023. "Network revenue management with online inverse batch gradient descent method," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2123-2137, July.
    11. Ming Chen & Zhi-Long Chen, 2018. "Robust Dynamic Pricing with Two Substitutable Products," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 249-268, May.
    12. Sham M. Kakade & Ilan Lobel & Hamid Nazerzadeh, 2013. "Optimal Dynamic Mechanism Design and the Virtual-Pivot Mechanism," Operations Research, INFORMS, vol. 61(4), pages 837-854, August.
    13. Joseph Jiaqi Xu & Peter S. Fader & Senthil Veeraraghavan, 2019. "Designing and Evaluating Dynamic Pricing Policies for Major League Baseball Tickets," Service Science, INFORMS, vol. 21(1), pages 121-138, January.
    14. Yiwei Chen & Cong Shi, 2019. "Joint Pricing and Inventory Management with Strategic Customers," Operations Research, INFORMS, vol. 67(6), pages 1610-1627, November.
    15. Tao Zhang & Quanyan Zhu, 2019. "On Incentive Compatibility in Dynamic Mechanism Design With Exit Option in a Markovian Environment," Papers 1909.13720, arXiv.org, revised May 2021.
    16. Tao Zhang & Quanyan Zhu, 2022. "On Incentive Compatibility in Dynamic Mechanism Design With Exit Option in a Markovian Environment," Dynamic Games and Applications, Springer, vol. 12(2), pages 701-745, June.
    17. Zhenzhen Yan & Karthik Natarajan & Chung Piaw Teo & Cong Cheng, 2022. "A Representative Consumer Model in Data-Driven Multiproduct Pricing Optimization," Management Science, INFORMS, vol. 68(8), pages 5798-5827, August.
    18. Xiangyu Gao & Stefanus Jasin & Sajjad Najafi & Huanan Zhang, 2022. "Joint Learning and Optimization for Multi-Product Pricing (and Ranking) Under a General Cascade Click Model," Management Science, INFORMS, vol. 68(10), pages 7362-7382, October.
    19. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    20. Dirk Bergemann & Maher Said, 2010. "Dynamic Auctions: A Survey," Levine's Working Paper Archive 661465000000000035, David K. Levine.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:69:y:2021:i:1:p:175-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.