IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v62y2016i7p2090-2109.html
   My bibliography  Save this article

Robust Growth-Optimal Portfolios

Author

Listed:
  • Napat Rujeerapaiboon

    (Risk Analytics and Optimization Chair, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland)

  • Daniel Kuhn

    (Risk Analytics and Optimization Chair, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland)

  • Wolfram Wiesemann

    (Imperial College Business School, Imperial College London, London SW7 2AZ, United Kingdom)

Abstract

The growth-optimal portfolio is designed to have maximum expected log return over the next rebalancing period. Thus, it can be computed with relative ease by solving a static optimization problem. The growth-optimal portfolio has sparked fascination among finance professionals and researchers because it can be shown to outperform any other portfolio with probability 1 in the long run. In the short run, however, it is notoriously volatile. Moreover, its computation requires precise knowledge of the asset return distribution, which is not directly observable but must be inferred from sparse data. By using methods from distributionally robust optimization, we design fixed-mix strategies that offer similar performance guarantees as the growth-optimal portfolio but for a finite investment horizon and for a whole family of distributions that share the same first- and second-order moments. We demonstrate that the resulting robust growth-optimal portfolios can be computed efficiently by solving a tractable conic program whose size is independent of the length of the investment horizon. Simulated and empirical backtests show that the robust growth-optimal portfolios are competitive with the classical growth-optimal portfolio across most realistic investment horizons and for an overwhelming majority of contaminated return distributions. This paper was accepted by Yinyu Ye, optimization .

Suggested Citation

  • Napat Rujeerapaiboon & Daniel Kuhn & Wolfram Wiesemann, 2016. "Robust Growth-Optimal Portfolios," Management Science, INFORMS, vol. 62(7), pages 2090-2109, July.
  • Handle: RePEc:inm:ormnsc:v:62:y:2016:i:7:p:2090-2109
    DOI: 10.1287/mnsc.2015.2228
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2015.2228
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2015.2228?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    2. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    3. Mark Rubinstein., 1991. "Continuously Rebalanced Investment Strategies," Research Program in Finance Working Papers RPF-205, University of California at Berkeley.
    4. Merton, Robert C. & Samuelson, Paul A., 1974. "Fallacy of the log-normal approximation to optimal portfolio decision-making over many periods," Journal of Financial Economics, Elsevier, vol. 1(1), pages 67-94, May.
    5. Paul A. Samuelson, 1970. "The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 37(4), pages 537-542.
    6. Hakansson, Nils H, 1971. "On Optimal Myopic Portfolio Policies, With and Without Serial Correlation of Yields," The Journal of Business, University of Chicago Press, vol. 44(3), pages 324-334, July.
    7. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    8. Daniel Kuhn & David Luenberger, 2010. "Analysis of the rebalancing frequency in log-optimal portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 221-234.
    9. Leonard Maclean & William Ziemba & Yuming Li, 2005. "Time to wealth goals in capital accumulation," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 343-355.
    10. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    11. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    12. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    13. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    14. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    15. Hakansson, Nils H, 1971. "Multi-Period Mean-Variance Analysis: Toward A General Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 26(4), pages 857-884, September.
    16. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    17. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2008. "Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization," Management Science, INFORMS, vol. 54(3), pages 573-585, March.
    18. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    19. Nils H. Hakansson & Bruce L. Miller, 1975. "Compound-Return Mean-Variance Efficient Portfolios Never Risk Ruin," Management Science, INFORMS, vol. 22(4), pages 391-400, December.
    20. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    21. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    22. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    23. M. A. H. Dempster & Igor Evstigneev & Klaus Reiner Schenk-Hoppe, 2008. "Financial markets. The joy of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 1-3.
    24. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    25. Xuan Vinh Doan & Xiaobo Li & Karthik Natarajan, 2015. "Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals," Operations Research, INFORMS, vol. 63(6), pages 1468-1488, December.
    26. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    27. Luenberger, David G., 1993. "A preference foundation for log mean-variance criteria in portfolio choice problems," Journal of Economic Dynamics and Control, Elsevier, vol. 17(5-6), pages 887-906.
    28. Roll, Richard, 1973. "Evidence on the "Growth-Optimum" Model," Journal of Finance, American Finance Association, vol. 28(3), pages 551-566, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vishal Gupta, 2019. "Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(9), pages 4242-4260, September.
    2. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    3. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    4. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    5. Pätäri, Eero & Ahmed, Sheraz & Luukka, Pasi & Yeomans, Julian Scott, 2023. "Can monthly-return rank order reveal a hidden dimension of momentum? The post-cost evidence from the U.S. stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    6. Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
    7. Chung-Han Hsieh, 2021. "On Asymptotic Log-Optimal Buy-and-Hold Strategy," Papers 2103.04898, arXiv.org.
    8. Ariel Neufeld & Matthew Ng Cheng En & Ying Zhang, 2024. "Robust SGLD algorithm for solving non-convex distributionally robust optimisation problems," Papers 2403.09532, arXiv.org.
    9. Ariel Neufeld & Julian Sester, 2024. "Non-concave distributionally robust stochastic control in a discrete time finite horizon setting," Papers 2404.05230, arXiv.org.
    10. Hsieh, Chung-Han, 2024. "On solving robust log-optimal portfolio: A supporting hyperplane approximation approach," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1129-1139.
    11. Ling, Aifan & Li, Junxue & Wen, Limin & Zhang, Yi, 2023. "When trackers are aware of ESG: Do ESG ratings matter to tracking error portfolio performance?," Economic Modelling, Elsevier, vol. 125(C).
    12. Ashrafi, Hedieh & Thiele, Aurélie C., 2021. "A study of robust portfolio optimization with European options using polyhedral uncertainty sets," Operations Research Perspectives, Elsevier, vol. 8(C).
    13. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    14. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    15. Napat Rujeerapaiboon & Daniel Kuhn & Wolfram Wiesemann, 2018. "Chebyshev Inequalities for Products of Random Variables," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 887-918, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Nov 2023.
    3. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    4. Ziemba, William, 2016. "A response to Professor Paul A. Samuelson's objections to Kelly capital growth investing," LSE Research Online Documents on Economics 119002, London School of Economics and Political Science, LSE Library.
    5. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    6. Wei Liu & Li Yang & Bo Yu, 2021. "KDE distributionally robust portfolio optimization with higher moment coherent risk," Annals of Operations Research, Springer, vol. 307(1), pages 363-397, December.
    7. Yining Gu & Yicheng Huang & Yanjun Wang, 2024. "Data-Driven Distributionally Robust Risk-Averse Two-Stage Stochastic Linear Programming over Wasserstein Ball," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 242-279, January.
    8. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    9. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    10. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    11. Eom, Cheoljun & Park, Jong Won, 2018. "A new method for better portfolio investment: A case of the Korean stock market," Pacific-Basin Finance Journal, Elsevier, vol. 49(C), pages 213-231.
    12. Sonntag, Dominik, 2018. "Die Theorie der fairen geometrischen Rendite [The Theory of Fair Geometric Returns]," MPRA Paper 87082, University Library of Munich, Germany.
    13. Jose Blanchet & Lin Chen & Xun Yu Zhou, 2022. "Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances," Management Science, INFORMS, vol. 68(9), pages 6382-6410, September.
    14. Luan, Fei & Zhang, Weiguo & Liu, Yongjun, 2022. "Robust international portfolio optimization with worst‐case mean‐CVaR," European Journal of Operational Research, Elsevier, vol. 303(2), pages 877-890.
    15. Víctor M. Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, "undated". "Portfolios in the Ibex 35 index: Alternative methods to the traditional framework, a comparative with the naive diversification in a pre- and post- crisis context," Documentos de Trabajo del ICAE 2015-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2015.
    16. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    17. Viet Anh Nguyen & Fan Zhang & Shanshan Wang & Jose Blanchet & Erick Delage & Yinyu Ye, 2021. "Robustifying Conditional Portfolio Decisions via Optimal Transport," Papers 2103.16451, arXiv.org, revised Apr 2024.
    18. Qi, Yue & Liao, Kezhi & Liu, Tongyang & Zhang, Yu, 2022. "Originating multiple-objective portfolio selection by counter-COVID measures and analytically instigating robust optimization by mean-parameterized nondominated paths," Operations Research Perspectives, Elsevier, vol. 9(C).
    19. Karagiannidis, Iordanis & Vozlyublennaia, Nadia, 2016. "Limits to mutual funds' ability to rely on mean/variance optimization," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 282-292.
    20. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:62:y:2016:i:7:p:2090-2109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.