IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v46y2000i11p1485-1496.html
   My bibliography  Save this article

A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis

Author

Listed:
  • Han Bleichrodt

    (iMTA/iBMG, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands)

  • Jose Luis Pinto

    (Department of Economics, Universitat Pompeu Fabra, Barcelona, Spain)

Abstract

An important reason why people violate expected utility theory is probability weighting. Previous studies on the probability weighting function typically assume a specific parametric form, exclude heterogeneity in individual preferences, and exclusively consider monetary decision making. This study presents a method to elicit the probability weighting function in rank-dependent expected utility theory that makes no prior assumptions about the functional form of the probability weighting function. We use both aggregate and individual subject data, thereby allowing for heterogeneity of individual preferences, and we examine probability weighting in a new domain, medical decision making. There is significant evidence of probability weighting both at the aggregate and at the individual subject level. The modal probability weighting function is inverse S-shaped, displaying both lower subadditivity and upper subadditivity. Probability weighting is in particular relevant at the boundaries of the unit interval. Compared to studies involving monetary outcomes, we generally find more elevation of the probability weighting function. The robustness of the empirical findings on probability weighting indicates its importance. Ignoring probability weighting in modeling decision under risk and in utility measurement is likely to lead to descriptively invalid theories and distorted elicitations.

Suggested Citation

  • Han Bleichrodt & Jose Luis Pinto, 2000. "A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis," Management Science, INFORMS, vol. 46(11), pages 1485-1496, November.
  • Handle: RePEc:inm:ormnsc:v:46:y:2000:i:11:p:1485-1496
    DOI: 10.1287/mnsc.46.11.1485.12086
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.46.11.1485.12086
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.46.11.1485.12086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark McCord & Richard de Neufville, 1986. ""Lottery Equivalents": Reduction of the Certainty Effect Problem in Utility Assessment," Management Science, INFORMS, vol. 32(1), pages 56-60, January.
    2. Lattimore, Pamela K. & Baker, Joanna R. & Witte, Ann D., 1992. "The influence of probability on risky choice: A parametric examination," Journal of Economic Behavior & Organization, Elsevier, vol. 17(3), pages 377-400, May.
    3. Peter Wakker & Anne Stiggelbout, 1995. "Explaining Distortions in Utility Elicitation through the Rank-dependent Model for Risky Choices," Medical Decision Making, , vol. 15(2), pages 180-186, June.
    4. Beattie, Jane & Loomes, Graham, 1997. "The Impact of Incentives upon Risky Choice Experiments," Journal of Risk and Uncertainty, Springer, vol. 14(2), pages 155-168, March.
    5. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    6. Camerer, Colin F & Hogarth, Robin M, 1999. "The Effects of Financial Incentives in Experiments: A Review and Capital-Labor-Production Framework," Journal of Risk and Uncertainty, Springer, vol. 19(1-3), pages 7-42, December.
    7. Joseph S. Pliskin & Donald S. Shepard & Milton C. Weinstein, 1980. "Utility Functions for Life Years and Health Status," Operations Research, INFORMS, vol. 28(1), pages 206-224, February.
    8. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    9. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    10. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    11. John D. Hey & Chris Orme, 2018. "Investigating Generalizations Of Expected Utility Theory Using Experimental Data," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 3, pages 63-98, World Scientific Publishing Co. Pte. Ltd..
    12. Pamela K. Lattimore & Joanna R. Baker & A. Dryden Witte, 1992. "The Influence Of Probability on Risky Choice: A parametric Examination," NBER Technical Working Papers 0081, National Bureau of Economic Research, Inc.
    13. Wu, George & Gonzalez, Richard, 1998. "Common Consequence Conditions in Decision Making under Risk," Journal of Risk and Uncertainty, Springer, vol. 16(1), pages 115-139, April.
    14. Peter Wakker & Daniel Deneffe, 1996. "Eliciting von Neumann-Morgenstern Utilities When Probabilities Are Distorted or Unknown," Management Science, INFORMS, vol. 42(8), pages 1131-1150, August.
    15. Tversky, Amos & Wakker, Peter, 1995. "Risk Attitudes and Decision Weights," Econometrica, Econometric Society, vol. 63(6), pages 1255-1280, November.
    16. Harless, David W & Camerer, Colin F, 1994. "The Predictive Utility of Generalized Expected Utility Theories," Econometrica, Econometric Society, vol. 62(6), pages 1251-1289, November.
    17. Dubourg, W R & Jones-Lee, M W & Loomes, Graham, 1994. "Imprecise Preferences and the WTP-WTA Disparity," Journal of Risk and Uncertainty, Springer, vol. 9(2), pages 115-133, October.
    18. Heath, Chip & Tversky, Amos, 1991. "Preference and Belief: Ambiguity and Competence in Choice under Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 4(1), pages 5-28, January.
    19. Imran S. Currim & Rakesh K. Sarin, 1989. "Prospect Versus Utility," Management Science, INFORMS, vol. 35(1), pages 22-41, January.
    20. A.M. Stiggelbout & G.M. Kiebert & J. Kievit & J.W.H. Leer & G. Stoter & J.C.J.M. De Haes, 1994. "Utility Assessment in Cancer Patients," Medical Decision Making, , vol. 14(1), pages 82-90, February.
    21. Mohammed Abdellaoui, 2000. "Parameter-Free Elicitation of Utility and Probability Weighting Functions," Management Science, INFORMS, vol. 46(11), pages 1497-1512, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Abdellaoui, 2000. "Parameter-Free Elicitation of Utility and Probability Weighting Functions," Management Science, INFORMS, vol. 46(11), pages 1497-1512, November.
    2. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    3. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    4. Nathalie Etchart-Vincent, 2009. "Probability weighting and the ‘level’ and ‘spacing’ of outcomes: An experimental study over losses," Journal of Risk and Uncertainty, Springer, vol. 39(1), pages 45-63, August.
    5. Han Bleichrodt & Jose Luis Pinto & Peter P. Wakker, 2001. "Making Descriptive Use of Prospect Theory to Improve the Prescriptive Use of Expected Utility," Management Science, INFORMS, vol. 47(11), pages 1498-1514, November.
    6. José Lara Resende & George Wu, 2010. "Competence effects for choices involving gains and losses," Journal of Risk and Uncertainty, Springer, vol. 40(2), pages 109-132, April.
    7. Mohammed Abdellaoui & Frank Vossmann & Martin Weber, 2005. "Choice-Based Elicitation and Decomposition of Decision Weights for Gains and Losses Under Uncertainty," Management Science, INFORMS, vol. 51(9), pages 1384-1399, September.
    8. Peter Brooks & Horst Zank, 2005. "Loss Averse Behavior," Journal of Risk and Uncertainty, Springer, vol. 31(3), pages 301-325, December.
    9. Peter Brooks & Simon Peters & Horst Zank, 2014. "Risk behavior for gain, loss, and mixed prospects," Theory and Decision, Springer, vol. 77(2), pages 153-182, August.
    10. Eyal Baharad & Doron Kliger, 2013. "Market failure in light of non-expected utility," Theory and Decision, Springer, vol. 75(4), pages 599-619, October.
    11. Michael Kilka & Martin Weber, 2001. "What Determines the Shape of the Probability Weighting Function Under Uncertainty?," Management Science, INFORMS, vol. 47(12), pages 1712-1726, December.
    12. Diecidue, Enrico & Schmidt, Ulrich & Zank, Horst, 2009. "Parametric weighting functions," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1102-1118, May.
    13. Martina Nardon & Paolo Pianca, 2019. "Behavioral premium principles," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 229-257, June.
    14. Christopher Schwand & Rudolf Vetschera & Lea Wakolbinger, 2010. "The influence of probabilities on the response mode bias in utility elicitation," Theory and Decision, Springer, vol. 69(3), pages 395-416, September.
    15. Han Bleichrodt & Jose Maria Abellan-Perpiñan & Jose Luis Pinto-Prades & Ildefonso Mendez-Martinez, 2007. "Resolving Inconsistencies in Utility Measurement Under Risk: Tests of Generalizations of Expected Utility," Management Science, INFORMS, vol. 53(3), pages 469-482, March.
    16. Mohammed Abdellaoui & Olivier L'Haridon & Corina Paraschiv, 2011. "Experienced vs. Described Uncertainty: Do We Need Two Prospect Theory Specifications?," Management Science, INFORMS, vol. 57(10), pages 1879-1895, October.
    17. Kpegli, Yao Thibaut & Corgnet, Brice & Zylbersztejn, Adam, 2023. "All at once! A comprehensive and tractable semi-parametric method to elicit prospect theory components," Journal of Mathematical Economics, Elsevier, vol. 104(C).
    18. Adam Booij & Bernard Praag & Gijs Kuilen, 2010. "A parametric analysis of prospect theory’s functionals for the general population," Theory and Decision, Springer, vol. 68(1), pages 115-148, February.
    19. George Wu & Alex B. Markle, 2008. "An Empirical Test of Gain-Loss Separability in Prospect Theory," Management Science, INFORMS, vol. 54(7), pages 1322-1335, July.
    20. Martina Nardon & Paolo Pianca, 2019. "European option pricing under cumulative prospect theory with constant relative sensitivity probability weighting functions," Computational Management Science, Springer, vol. 16(1), pages 249-274, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:46:y:2000:i:11:p:1485-1496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.