IDEAS home Printed from https://ideas.repec.org/a/igg/jrqeh0/v11y2022i4p1-22.html
   My bibliography  Save this article

A DNA Sequencing Medical Image Encryption System (DMIES) Using Chaos Map and Knight's Travel Map

Author

Listed:
  • Adithya B.

    (Puducherry Technological University, India)

  • Santhi G.

    (Puducherry Technological University, India)

Abstract

This research aims to devise a method of encrypting medical images based on chaos map, Knight's travel map, affine transformation, and DNA cryptography to prevent attackers from accessing the data. The proposed DMIES cryptographic system performs the chaos intertwining logistic map diffusion and confusion process on chosen pixels of medical images. The DNA structure of the medical image has generated using all eight DNA encoding rules that are dependent on the pixel positions in the medical image. Knight's travel map is decomposed, which helps to prevent tampering and certification after the diffusion process. Finally, to avoid the deformity of medical data, a shear-based affine transformation is used. Compared to existing standard image encryption systems, the extensive and complete security assessment highlights the relevance and benefits of the proposed DMIES cryptosystem. The proposed DMIES can also withstand various attacks like statistical, differential, exhaustive, cropping, and noise attack.

Suggested Citation

  • Adithya B. & Santhi G., 2022. "A DNA Sequencing Medical Image Encryption System (DMIES) Using Chaos Map and Knight's Travel Map," International Journal of Reliable and Quality E-Healthcare (IJRQEH), IGI Global, vol. 11(4), pages 1-22, October.
  • Handle: RePEc:igg:jrqeh0:v:11:y:2022:i:4:p:1-22
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJRQEH.308803
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jrqeh0:v:11:y:2022:i:4:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.