IDEAS home Printed from https://ideas.repec.org/a/igg/jcac00/v9y2019i1p50-58.html
   My bibliography  Save this article

Vulnerability of the Synchronization Process in the Quantum Key Distribution System

Author

Listed:
  • A. P. Pljonkin

    (Southern Federal University, Taganrog, Russia)

Abstract

A typical structure of an auto-compensation system for quantum key distribution is given. The principle of operation of a fiber-optic system for the distribution of quantum keys with phase coding of photon states is described. The operation of the system in the synchronization mode and the formation of quantum keys was investigated. The process of detecting a time interval with an optical synchronization pulse is analyzed. The structural scheme of the experimental stand of the quantum-cryptographic network is given. Data are obtained that attest to the presence of a multiphoton signal during the transmission of sync pulses from the transceiver station to the coding and backward direction. The results of experimental studies are presented, which prove the existence of a vulnerability in the process of synchronization of the quantum key distribution system. It is shown that the use of a multiphoton optical pulse as a sync signal makes it possible for an attacker to unauthorized access to a quantum communication channel. The experimental results show that tapping a portion of the optical power from the quantum communication channel during the synchronization process allows an attacker to remain unnoticed while the quantum protocol is operating. Experimentally proved the possibility of introducing malfunctions into the operation of the quantum communication system at the stage of key formation, while remaining invisible for control means.

Suggested Citation

  • A. P. Pljonkin, 2019. "Vulnerability of the Synchronization Process in the Quantum Key Distribution System," International Journal of Cloud Applications and Computing (IJCAC), IGI Global, vol. 9(1), pages 50-58, January.
  • Handle: RePEc:igg:jcac00:v:9:y:2019:i:1:p:50-58
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCAC.2019010104
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eied. M. Khalil & Abdel-Baset. A. Mohamed & Abdel-Shafy F. Obada & Hichem Eleuch, 2020. "Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity," Mathematics, MDPI, vol. 8(10), pages 1-11, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcac00:v:9:y:2019:i:1:p:50-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.