IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4006-d1392021.html
   My bibliography  Save this article

Spatiotemporal Patterns and Driving Factors of Green and Low-Carbon Urbanization in the Yangtze River Delta Region, China

Author

Listed:
  • Yingao Huang

    (College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Chenjun Kuai

    (College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China)

  • Feier Wang

    (College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
    Zhejiang Ecological Civilization Academy, Anji 313300, China)

Abstract

Green and low-carbon urbanization (GLCU) is as a key objective within the realm of urban sustainable development. The extent of coordination between urbanization and low-carbon development determines the level of GLCU. However, the complex driving mechanism of GLCU has not garnered the required attention within the existing literature. In light of this, the present paper introduces a multi-dimensional comprehensive evaluation framework aimed at assessing the level of GLCU. Specifically, it delves into the spatial–temporal characteristics and driving forces that underpin GLCU. The results indicate that the level of GLCU in the YRD region increased rapidly from 2005 to 2020, evolving from low coordination to moderate coordination. Yet, the trade-off between urbanization and low-carbon development still exists. The surge in population density and economic prosperity emerged as the principal positive drivers of GLCU, while the carbon emissions intensity exerted a negative influence. Furthermore, the effect of industrial structure shifted from a positive driver to a negative one. The effects of these drivers upon GLCU varied at different urbanization stages and determined the patterns of urban development, indicating that policies for sustainable development should be tailored to cities at different urbanization stages. These findings can provide useful information for policy makers and urban planners in managing and promoting urban sustainable development.

Suggested Citation

  • Yingao Huang & Chenjun Kuai & Feier Wang, 2024. "Spatiotemporal Patterns and Driving Factors of Green and Low-Carbon Urbanization in the Yangtze River Delta Region, China," Sustainability, MDPI, vol. 16(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4006-:d:1392021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    2. Yan Wu & Yingmei Wu & Chen Li & Binpin Gao & Kejun Zheng & Mengjiao Wang & Yuhong Deng & Xin Fan, 2022. "Spatial Relationships and Impact Effects between Urbanization and Ecosystem Health in Urban Agglomerations along the Belt and Road: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area," IJERPH, MDPI, vol. 19(23), pages 1-20, November.
    3. Zhanhang Zhou & Linjian Cao & Kuokuo Zhao & Dongliang Li & Ci Ding, 2021. "Spatio-Temporal Effects of Multi-Dimensional Urbanization on Carbon Emission Efficiency: Analysis Based on Panel Data of 283 Cities in China," IJERPH, MDPI, vol. 18(23), pages 1-20, December.
    4. Wei Hu & Jingsong Liu, 2023. "The Coupling and Coordination of Urban Modernization and Low-Carbon Development," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    5. Wanxia Ren & Bing Xue & Xiao Xie & Bingyu Zhao & Jingzhong Li & Bin Han, 2023. "Urban Comprehensive Carrying Capacity and Urbanization in Northeast China," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    6. Wang, Yanan & Li, Xinbei & Kang, Yanqing & Chen, Wei & Zhao, Minjuan & Li, Wei, 2019. "Analyzing the impact of urbanization quality on CO2 emissions: What can geographically weighted regression tell us?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 127-136.
    7. Ziyu Duan & Seiyong Kim, 2023. "Characteristics and Variations in Korea through the Lens of Net-Zero Carbon Transformation in Cities," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    8. Chen Li & Heng Li & Xionghe Qin, 2022. "Spatial Heterogeneity of Carbon Emissions and Its Influencing Factors in China: Evidence from 286 Prefecture-Level Cities," IJERPH, MDPI, vol. 19(3), pages 1-29, January.
    9. Song, Qijiao & Qin, Ming & Wang, Ruichen & Qi, Ye, 2020. "How does the nested structure affect policy innovation?: Empirical research on China's low carbon pilot cities," Energy Policy, Elsevier, vol. 144(C).
    10. Yufei Fang & Zhiguang Shan, 2022. "How to Promote a Smart City Effectively? An Evaluation Model and Efficiency Analysis of Smart Cities in China," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    2. Lena Kilian & Anne Owen & Andy Newing & Diana Ivanova, 2022. "Exploring Transport Consumption-Based Emissions: Spatial Patterns, Social Factors, Well-Being, and Policy Implications," Sustainability, MDPI, vol. 14(19), pages 1-26, September.
    3. Xu, Jiajun & Wang, Jinchao & Li, Rui & Yang, Xiaojun, 2023. "Spatio-temporal effects of urbanization on CO2 emissions: Evidences from 268 Chinese cities," Energy Policy, Elsevier, vol. 177(C).
    4. Huaxi Yuan & Yidai Feng & Jay Lee & Haimeng Liu, 2020. "The Spatio-Temporal Heterogeneity of Financial Agglomeration on Green Development in China Cities Using GTWR Model," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    5. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    6. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    7. Liu, Xiangsheng & Lv, Lingli, 2023. "The effect of China's low carbon city pilot policy on corporate financialization," Finance Research Letters, Elsevier, vol. 54(C).
    8. Li, Yanmei & Cui, Yifei & Cai, Bofeng & Guo, Jingpeng & Cheng, Tianhai & Zheng, Fengjie, 2020. "Spatial characteristics of CO2 emissions and PM2.5 concentrations in China based on gridded data," Applied Energy, Elsevier, vol. 266(C).
    9. Weixiang Zhao & Yankun Xu, 2022. "Public Expenditure and Green Total Factor Productivity: Evidence from Chinese Prefecture-Level Cities," IJERPH, MDPI, vol. 19(9), pages 1-27, May.
    10. Xiwen Fu & Shuxin Wang, 2022. "How to Promote Low-Carbon Cities with Blockchain Technology? A Blockchain-Based Low-Carbon Development Model for Chinese Cities," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    11. Huicai Yang & Jingtao Ma & Xinying Jiao & Guofei Shang & Haiming Yan, 2023. "Characteristics and Driving Mechanism of Urban Construction Land Expansion along with Rapid Urbanization and Carbon Neutrality in Beijing, China," Land, MDPI, vol. 12(7), pages 1-17, July.
    12. Moore, David & Webb, Amanda L., 2022. "Evaluating energy burden at the urban scale: A spatial regression approach in Cincinnati, Ohio," Energy Policy, Elsevier, vol. 160(C).
    13. Le Zhang & Qinyi Gu & Chen Li & Yi Huang, 2022. "Characteristics and Spatial–Temporal Differences of Urban “Production, Living and Ecological” Environmental Quality in China," IJERPH, MDPI, vol. 19(22), pages 1-22, November.
    14. Meiling Wang & Silu Pang & Ikram Hmani & Ilham Hmani & Cunfang Li & Zhengxia He, 2021. "Towards sustainable development: How does technological innovation drive the increase in green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 217-227, January.
    15. Liu, Qianqian & Wang, Shaojian & Zhang, Wenzhong & Li, Jiaming & Kong, Yunlong, 2019. "Examining the effects of income inequality on CO2 emissions: Evidence from non-spatial and spatial perspectives," Applied Energy, Elsevier, vol. 236(C), pages 163-171.
    16. Jiansheng Qu & Lina Liu & Jingjing Zeng & Tek Narayan Maraseni & Zhiqiang Zhang, 2022. "City-Level Determinants of Household CO 2 Emissions per Person: An Empirical Study Based on a Large Survey in China," Land, MDPI, vol. 11(6), pages 1-14, June.
    17. Shijie Yang & Yunjia Wang & Rongqing Han & Yong Chang & Xihua Sun, 2021. "Spatial Heterogeneity of Factors Influencing CO 2 Emissions in China’s High-Energy-Intensive Industries," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    18. Feipeng Guo & Linji Zhang & Zifan Wang & Shaobo Ji, 2022. "Research on Determining the Critical Influencing Factors of Carbon Emission Integrating GRA with an Improved STIRPAT Model: Taking the Yangtze River Delta as an Example," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
    19. Wang, Hanjie & Yu, Xiaohua, 2023. "Carbon dioxide emission typology and policy implications: Evidence from machine learning," China Economic Review, Elsevier, vol. 78(C).
    20. Cayetano Medina-Molina & María de la Sierra Rey-Tienda & Eva María Suárez-Redondo, 2022. "The Transition of Cities towards Innovations in Mobility: Searching for a Global Perspective," IJERPH, MDPI, vol. 19(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4006-:d:1392021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.