Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Helske, Jouni, 2017. "KFAS: Exponential Family State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i10).
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Christian Jaag & Christian Bach, 2017.
"Blockchain Technology and Cryptocurrencies: Opportunities for Postal Financial Services,"
Topics in Regulatory Economics and Policy, in: Michael Crew & Pier Luigi Parcu & Timothy Brennan (ed.), The Changing Postal and Delivery Sector, pages 205-221,
Springer.
- Christian Jaag & Christian Bach, 2016. "Blockchain Technology and Cryptocurrencies: Opportunities for Postal Financial Services," Working Papers 0056, Swiss Economics.
- Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992.
"Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?,"
Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
- Kwiatkowski, D. & Phillips, P.C.B. & Schmidt, P., 1990. "Testing the Null Hypothesis of Stationarity Against the Alternative of Unit Root : How Sure are we that Economic Time Series have a Unit Root?," Papers 8905, Michigan State - Econometrics and Economic Theory.
- Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
- Ivan Svetunkov & John E. Boylan, 2020. "State-space ARIMA for supply-chain forecasting," International Journal of Production Research, Taylor & Francis Journals, vol. 58(3), pages 818-827, February.
- Aerambamoorthy Thavaneswaran & Alex Paseka & Julieta Frank, 2020. "Generalized value at risk forecasting," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(20), pages 4988-4995, October.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Tom Doan, "undated". "SEASONALDLM: RATS procedure to create the matrices for the seasonal component of a DLM," Statistical Software Components RTS00251, Boston College Department of Economics.
- Umar, Zaghum & Gubareva, Mariya, 2020. "A time–frequency analysis of the impact of the Covid-19 induced panic on the volatility of currency and cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
- G. R. Jafari & A. Bahraminasab & P. Norouzzadeh, 2007. "Why Does The Standard Garch(1, 1) Model Work Well?," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1223-1230.
- Mnif, Emna & Jarboui, Anis & Mouakhar, Khaireddine, 2020. "How the cryptocurrency market has performed during COVID 19? A multifractal analysis," Finance Research Letters, Elsevier, vol. 36(C).
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Jong-Min Kim & Chulhee Jun & Junyoup Lee, 2021. "Forecasting the Volatility of the Cryptocurrency Market by GARCH and Stochastic Volatility," Mathematics, MDPI, vol. 9(14), pages 1-16, July.
- Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
- Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
- Hu, Yan & Ni, Jian & Wen, Liu, 2020. "A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Jesse Yli-Huumo & Deokyoon Ko & Sujin Choi & Sooyong Park & Kari Smolander, 2016. "Where Is Current Research on Blockchain Technology?—A Systematic Review," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-27, October.
- Montasser, Ghassen El & Charfeddine, Lanouar & Benhamed, Adel, 2022. "COVID-19, cryptocurrencies bubbles and digital market efficiency: sensitivity and similarity analysis," Finance Research Letters, Elsevier, vol. 46(PA).
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107034723, September.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, September.
- Deb, Prokash & Dey, Madan M. & Surathkal, Prasanna, 2021. "Fish Price Volatility Dynamics in Bangladesh," 2021 Annual Meeting, August 1-3, Austin, Texas 314077, Agricultural and Applied Economics Association.
- C.S. Bos & S.J. Koopman & M. Ooms, 2007.
"Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks,"
Tinbergen Institute Discussion Papers
07-099/4, Tinbergen Institute.
- Charles S. Bos & Siem Jan Koopman & Marius Ooms, 2007. "Long memory modelling of inflation with stochastic variance and structural breaks," CREATES Research Papers 2007-44, Department of Economics and Business Economics, Aarhus University.
- Ioannis Papageorgiou & Ioannis Kontoyiannis, 2023. "The Bayesian Context Trees State Space Model for time series modelling and forecasting," Papers 2308.00913, arXiv.org, revised Oct 2023.
- Zeynel Abidin Ozdemir, 2010. "Dynamics Of Inflation, Output Growth And Their Uncertainty In The Uk: An Empirical Analysis," Manchester School, University of Manchester, vol. 78(6), pages 511-537, December.
- Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005.
"Mean and variance causality between the Cyprus Stock Exchange and major equity markets,"
Working Papers
0501, University of Crete, Department of Economics.
- Georgios Kouretas & Eleni Constantinou & Robert Georgiades & Avo Kazandjian, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Money Macro and Finance (MMF) Research Group Conference 2005 24, Money Macro and Finance Research Group.
- Broto Carmen & Ruiz Esther, 2009.
"Testing for Conditional Heteroscedasticity in the Components of Inflation,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
- Carmen Broto & Esther Ruiz, 2008. "Testing for conditional heteroscedasticity in the components of inflation," Working Papers 0812, Banco de España.
- Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018.
"Multivariate Stochastic Volatility with Co-Heteroscedasticity,"
Working Paper series
18-38, Rimini Centre for Economic Analysis.
- Joshua Chan & Arnaud Doucet & Roberto Leon-Gonzalez & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," GRIPS Discussion Papers 18-12, National Graduate Institute for Policy Studies.
- Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- CHAN Joshua & DOUCET Arnaud & Roberto Leon-Gonzalez & STRACHAN Rodney W., 2020. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," GRIPS Discussion Papers 20-09, National Graduate Institute for Policy Studies.
- Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
- Ben Tims & Ronald Mahieu, 2006. "A Range-Based Multivariate Stochastic Volatility Model for Exchange Rates," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 409-424.
- Pami Dua & Nishita Raje & Satyananda Sahoo, 2004.
"Interest Rate Modeling and Forecasting in India,"
Occasional papers
3, Centre for Development Economics, Delhi School of Economics.
- Pami Dua, 2008. "Interest Rate Modeling and Forecasting in India," Working Papers id:1521, eSocialSciences.
- Dang, Tam Hoang Nhat & Balli, Faruk & Balli, Hatice Ozer & Gabauer, David & Nguyen, Thi Thu Ha, 2024. "Sectoral uncertainty spillovers in emerging markets: A quantile time–frequency connectedness approach," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 121-139.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2016.
"Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
- Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Hungnes Håvard, 2015.
"Testing for co-nonlinearity,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(3), pages 339-353, June.
- Håvard Hungnes, 2012. "Testing for co-non-linearity," Discussion Papers 699, Statistics Norway, Research Department.
- Alizadeh, Amir H. & Tamvakis, Michael, 2016. "Market conditions, trader types and price–volume relation in energy futures markets," Energy Economics, Elsevier, vol. 56(C), pages 134-149.
- Efimova, Olga & Serletis, Apostolos, 2014.
"Energy markets volatility modelling using GARCH,"
Energy Economics, Elsevier, vol. 43(C), pages 264-273.
- Olga Efimova & Apostolos Serletis, "undated". "Energy Markets Volatility Modelling using GARCH," Working Papers 2014-39, Department of Economics, University of Calgary, revised 24 Feb 2014.
- Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
More about this item
Keywords
cryptocurrency; volatility; state space model; Kalman filter;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3190-:d:906266. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.