IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i5p155-d1386129.html
   My bibliography  Save this article

Novel Approach towards a Fully Deep Learning-Based IoT Receiver Architecture: From Estimation to Decoding

Author

Listed:
  • Matthew Boeding

    (Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA)

  • Michael Hempel

    (Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA)

  • Hamid Sharif

    (Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA)

Abstract

As the Internet of Things (IoT) continues to expand, wireless communication is increasingly widespread across diverse industries and remote devices. This includes domains such as Operational Technology in the Smart Grid. Notably, there is a surge in resource-constrained devices leveraging wireless communication, especially with the advances of 5G/6G technology. Nevertheless, the transmission of wireless communications demands substantial power and computational resources, presenting a significant challenge to these devices and their operations. In this work, we propose the use of deep learning to improve the Bit Error Rate (BER) performance of Orthogonal Frequency Division Multiplexing (OFDM) wireless receivers. By improving the BER performance of these receivers, devices can transmit with less power, thereby improving IoT devices’ battery life. The architecture presented in this paper utilizes a depthwise Convolutional Neural Network (CNN) for channel estimation and demodulation, whereas a Graph Neural Network (GNN) is utilized for Low-Density Parity Check (LDPC) decoding, tested against a proposed (1998, 1512) LDPC code. Our results show higher performance than traditional receivers in both isolated tests for the CNN and GNN, and a combined end-to-end test with lower computational complexity than other proposed deep learning models. For BER improvement, our proposed approach showed a 1 dB improvement for eliminating BER in QPSK models. Additionally, it improved 16-QAM Rician BER by five decades, 16-QAM LOS model BER by four decades, 64-QAM Rician BER by 2.5 decades, and 64-QAM LOS model BER by three decades.

Suggested Citation

  • Matthew Boeding & Michael Hempel & Hamid Sharif, 2024. "Novel Approach towards a Fully Deep Learning-Based IoT Receiver Architecture: From Estimation to Decoding," Future Internet, MDPI, vol. 16(5), pages 1-13, April.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:5:p:155-:d:1386129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/5/155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/5/155/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:5:p:155-:d:1386129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.