IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i6p5182-5197d50602.html
   My bibliography  Save this article

Sustainability Assessment of a Self-Consumption Wood-Energy Chain on Small Scale for Heat Generation in Central Italy

Author

Listed:
  • Stefano Verani

    (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Unità di ricerca per le produzioni legnose fuori foresta, Via valle della quistione, 27, 00166 Rome, Italy)

  • Giulio Sperandio

    (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Unità di ricerca per l'ingegneria agraria, Via della Pascolare, 16, 00016 Monterotondo, Italy)

  • Rodolfo Picchio

    (Department of Science and Technology for Agriculture, Forest, Nature and Energy (DAFNE), Tuscia University, Via S. Camillo De Lellis, 01100 Viterbo, Italy)

  • Enrico Marchi

    (Department of Agriculture, Food and Forest Systems, Florence University, Via San Bonaventura, 13 50145 Florence, Italy)

  • Corrado Costa

    (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA), Unità di ricerca per l'ingegneria agraria, Via della Pascolare, 16, 00016 Monterotondo, Italy)

Abstract

The sustainability of a small-scale self-consumption wood-energy chain for heat generation in central Italy was analyzed from a technical, economic and energetic point of view. A micro-chain was developed within the CRA-ING farm at Monterotondo (Rome, Italy): The purpose of this system was to produce biomass for supplying a heating plant within the CRA-ING property as a substitute for diesel fuel. A poplar short rotation coppice, established with clones AF2, AF6 and Monviso, fed the micro-chain. The rotation was biennial. The average plantation production (Mg d.m .·ha −1 ·year −1 ) was 10.2, with a maximum of 13.53 for the twin-rows AF2 and a minimum of 8.00 for the single-row Monviso. The economic assessment was based on the Net Present Value (NPV) method and the equivalent annuity cost, and found an average saving of 15.60 €·GJ −1 of heat generated by the wood chips heating system in comparison with the diesel heating system over a 10 year lifetime of the thermal power plant. The energy assessment of the poplar plantation, carried out using the Gross Energy Requirements method, reported an energy output/input ratio of 12.3. The energy output/input ratio of the whole micro-chain was 4.5.

Suggested Citation

  • Stefano Verani & Giulio Sperandio & Rodolfo Picchio & Enrico Marchi & Corrado Costa, 2015. "Sustainability Assessment of a Self-Consumption Wood-Energy Chain on Small Scale for Heat Generation in Central Italy," Energies, MDPI, vol. 8(6), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5182-5197:d:50602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/6/5182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/6/5182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sgroi, Filippo & Di Trapani, Anna Maria & Foderà, Mario & Testa, Riccardo & Tudisca, Salvatore, 2015. "Economic assessment of Eucalyptus (spp.) for biomass production as alternative crop in Southern Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 614-619.
    2. Rodolfo Picchio & Raffaello Spina & Alessandro Sirna & Angela Lo Monaco & Vincenzo Civitarese & Angelo Del Giudice & Alessandro Suardi & Luigi Pari, 2012. "Characterization of Woodchips for Energy from Forestry and Agroforestry Production," Energies, MDPI, vol. 5(10), pages 1-14, September.
    3. Testa, Riccardo & Di Trapani, Anna Maria & Foderà, Mario & Sgroi, Filippo & Tudisca, Salvatore, 2014. "Economic evaluation of introduction of poplar as biomass crop in Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 775-780.
    4. John Whalley & Sean Walsh, 2008. "Bringing the Copenhagen Global Climate Change Negotiations to Conclusion," CESifo Working Paper Series 2458, CESifo.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    2. Carlo Bisaglia & Massimo Brambilla & Maurizio Cutini & Antonio Bortolotti & Guido Rota & Giorgio Minuti & Roberto Sargiani, 2018. "Reusing Pruning Residues for Thermal Energy Production: A Mobile App to Match Biomass Availability with the Heating Energy Balance of Agro-Industrial Buildings," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    3. Julia Szulecka, 2019. "Towards Sustainable Wood-Based Energy: Evaluation and Strategies for Mainstreaming Sustainability in the Sector," Sustainability, MDPI, vol. 11(2), pages 1-21, January.
    4. Vincenzo Civitarese & Andrea Acampora & Giulio Sperandio & Alberto Assirelli & Rodolfo Picchio, 2019. "Production of Wood Pellets from Poplar Trees Managed as Coppices with Different Harvesting Cycles," Energies, MDPI, vol. 12(15), pages 1-16, August.
    5. Nati, Carla & Boschiero, Martina & Picchi, Gianni & Mastrolonardo, Giovanni & Kelderer, Markus & Zerbe, Stefan, 2018. "Energy performance of a new biomass harvester for recovery of orchard wood wastes as alternative to mulching," Renewable Energy, Elsevier, vol. 124(C), pages 121-128.
    6. Esperanza Monedero & Juan José Hernández & Rocío Collado, 2017. "Combustion-Related Properties of Poplar, Willow and Black Locust to be used as Fuels in Power Plants," Energies, MDPI, vol. 10(7), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanbeveren, Stefan P.P. & Spinelli, Raffaele & Eisenbies, Mark & Schweier, Janine & Mola-Yudego, Blas & Magagnotti, Natascia & Acuna, Mauricio & Dimitriou, Ioannis & Ceulemans, Reinhart, 2017. "Mechanised harvesting of short-rotation coppices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 90-104.
    2. Sgroi, Filippo & Foderà, Mario & Trapani, Anna Maria Di & Tudisca, Salvatore & Testa, Riccardo, 2015. "Economic evaluation of biogas plant size utilizing giant reed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 403-409.
    3. Testa, Riccardo & Foderà, Mario & Di Trapani, Anna Maria & Tudisca, Salvatore & Sgroi, Filippo, 2016. "Giant reed as energy crop for Southern Italy: An economic feasibility study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 558-564.
    4. Lanfranchi, Maurizio & Giannetto, Carlo & De Pascale, Angelina, 2016. "Economic analysis and energy valorization of by-products of the olive oil process: “Valdemone DOP” extra virgin olive oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1227-1236.
    5. Nadia Palmieri & Alessandro Suardi & Luigi Pari, 2020. "Italian Consumers’ Willingness to Pay for Eucalyptus Firewood," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    6. Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
    7. Jéssica Bárbara da Silva & Edvaldo Pereira Santos Júnior & João Gabriel Távora Pedrosa & Aldo Torres Sales & Everardo Valadares de Sa Barretto Sampaio & Rômulo Simões Cezar Menezes & Emmanuel Damilano, 2022. "Energetic and Economic Analysis of Spineless Cactus Biomass Production in the Brazilian Semi-arid Region," Energies, MDPI, vol. 15(14), pages 1-16, July.
    8. Krystyna Kurowska & Renata Marks-Bielska & Stanisław Bielski & Audrius Aleknavičius & Cezary Kowalczyk, 2020. "Geographic Information Systems and the Sustainable Development of Rural Areas," Land, MDPI, vol. 10(1), pages 1-18, December.
    9. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    10. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    11. Łukasz Sobol & Arkadiusz Dyjakon & Alessandro Suardi & Rainer Preißmann, 2021. "Analysis of the Possibility of Energetic Utilization of Biomass Obtained from Grass Mowing of a Large-Area Golf Course—A Case Study of Tuscany," Energies, MDPI, vol. 14(17), pages 1-22, September.
    12. Caporale, Diana & De Lucia, Caterina, 2015. "Social acceptance of on-shore wind energy in Apulia Region (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1378-1390.
    13. Paniagua, S. & Escudero, L. & Escapa, C. & Coimbra, R.N. & Otero, M. & Calvo, L.F., 2016. "Effect of waste organic amendments on Populus sp biomass production and thermal characteristics," Renewable Energy, Elsevier, vol. 94(C), pages 166-174.
    14. Bartolozzi, Irene & Rizzi, Francesco & Frey, Marco, 2017. "Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 408-420.
    15. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    16. John Whalley & Dana Medianu, 2010. "The Deepening China Brazil Economic Relationship," CESifo Working Paper Series 3289, CESifo.
    17. Burkard Eberlein & Dirk Matten, 2009. "Business Responses to Climate Change Regulation in Canada and Germany: Lessons for MNCs from Emerging Economies," Journal of Business Ethics, Springer, vol. 86(2), pages 241-255, March.
    18. Rodolfo Picchio & Rachele Venanzi & Nicolò Di Marzio & Damiano Tocci & Farzam Tavankar, 2020. "A Comparative Analysis of Two Cable Yarder Technologies Performing Thinning Operations on a 33 Year Old Pine Plantation: A Potential Source of Wood for Energy," Energies, MDPI, vol. 13(20), pages 1-20, October.
    19. Ramírez-Arpide, Félix Rafael & Espinosa-Solares, Teodoro & Gallegos-Vázquez, Clemente & Santoyo-Cortés, Vinicio Horacio, 2019. "Bioenergy production from nopal cladodes and dairy cow manure on a farm-scale level: Challenges for its economic feasibility in Mexico," Renewable Energy, Elsevier, vol. 142(C), pages 383-392.
    20. Chinnici, Gaetano & D’Amico, Mario & Rizzo, Marcella & Pecorino, Biagio, 2015. "Analysis of biomass availability for energy use in Sicily," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1025-1030.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5182-5197:d:50602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.