IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i7p2351-2369d18775.html
   My bibliography  Save this article

Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands

Author

Listed:
  • Julia Merino

    (Department of Electrical Engineering, ETS Ingenieros Industriales, Technical University of Madrid, C/Jose Gutierrez Abascal 2, Madrid 28006, Spain)

  • Carlos Veganzones

    (Department of Electrical Engineering, ETS Ingenieros Industriales, Technical University of Madrid, C/Jose Gutierrez Abascal 2, Madrid 28006, Spain)

  • Jose A. Sanchez

    (Department of Hydraulic and Energy Engineering, ETS Ingenieros de Caminos, Canales y Puertos, Technical University of Madrid, C/ Profesor Aranguren s/n, Madrid 28040, Spain)

  • Sergio Martinez

    (Department of Electrical Engineering, ETS Ingenieros Industriales, Technical University of Madrid, C/Jose Gutierrez Abascal 2, Madrid 28006, Spain)

  • Carlos A. Platero

    (Department of Electrical Engineering, ETS Ingenieros Industriales, Technical University of Madrid, C/Jose Gutierrez Abascal 2, Madrid 28006, Spain)

Abstract

Massive integration of renewable energy sources in electrical power systems of remote islands is a subject of current interest. The increasing cost of fossil fuels, transport costs to isolated sites and environmental concerns constitute a serious drawback to the use of conventional fossil fuel plants. In a weak electrical grid, as it is typical on an island, if a large amount of conventional generation is substituted by renewable energy sources, power system safety and stability can be compromised, in the case of large grid disturbances. In this work, a model for transient stability analysis of an isolated electrical grid exclusively fed from a combination of renewable energy sources has been studied. This new generation model will be installed in El Hierro Island, in Spain. Additionally, an operation strategy to coordinate the generation units (wind, hydro) is also established. Attention is given to the assessment of inertial energy and reactive current to guarantee power system stability against large disturbances. The effectiveness of the proposed strategy is shown by means of simulation results.

Suggested Citation

  • Julia Merino & Carlos Veganzones & Jose A. Sanchez & Sergio Martinez & Carlos A. Platero, 2012. "Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands," Energies, MDPI, vol. 5(7), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:7:p:2351-2369:d:18775
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/7/2351/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/7/2351/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.
    2. Sánchez, J.A. & Veganzones, C. & Martínez, S. & Blázquez, F. & Herrero, N. & Wilhelmi, J.R., 2008. "Dynamic model of wind energy conversion systems with variable speed synchronous generator and full-size power converter for large-scale power system stability studies," Renewable Energy, Elsevier, vol. 33(6), pages 1186-1198.
    3. Bakos, George C., 2002. "Feasibility study of a hybrid wind/hydro power-system for low-cost electricity production," Applied Energy, Elsevier, vol. 72(3-4), pages 599-608, July.
    4. Anagnostopoulos, J.S. & Papantonis, D.E., 2008. "Simulation and size optimization of a pumped–storage power plant for the recovery of wind-farms rejected energy," Renewable Energy, Elsevier, vol. 33(7), pages 1685-1694.
    5. Jaramillo, O.A. & Borja, M.A. & Huacuz, J.M., 2004. "Using hydropower to complement wind energy: a hybrid system to provide firm power," Renewable Energy, Elsevier, vol. 29(11), pages 1887-1909.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    2. Guillermo Martínez-Lucas & José Ignacio Sarasúa & José Ángel Sánchez-Fernández, 2018. "Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System," Energies, MDPI, vol. 11(1), pages 1-25, January.
    3. Erdinc, Ozan & Paterakis, Nikolaos G. & Catalão, João P.S., 2015. "Overview of insular power systems under increasing penetration of renewable energy sources: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 333-346.
    4. Martínez-Lucas, Guillermo & Sarasúa, José Ignacio & Sánchez-Fernández, José Ángel & Wilhelmi, José Román, 2016. "Frequency control support of a wind-solar isolated system by a hydropower plant with long tail-race tunnel," Renewable Energy, Elsevier, vol. 90(C), pages 362-376.
    5. Thomas Patsialis & Ioannis Kougias & Nerantzis Kazakis & Nicolaos Theodossiou & Peter Droege, 2016. "Supporting Renewables’ Penetration in Remote Areas through the Transformation of Non-Powered Dams," Energies, MDPI, vol. 9(12), pages 1-14, December.
    6. Keke Wang & Dongxiao Niu & Min Yu & Yi Liang & Xiaolong Yang & Jing Wu & Xiaomin Xu, 2021. "Analysis and Countermeasures of China’s Green Electric Power Development," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    7. Carlos A. Platero & José A. Sánchez & Christophe Nicolet & Philippe Allenbach, 2019. "Hydropower Plants Frequency Regulation Depending on Upper Reservoir Water Level," Energies, MDPI, vol. 12(9), pages 1-15, April.
    8. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    9. Colmenar-Santos, Antonio & Linares-Mena, Ana-Rosa & Borge-Diez, David & Quinto-Alemany, Carlos-Domingo, 2017. "Impact assessment of electric vehicles on islands grids: A case study for Tenerife (Spain)," Energy, Elsevier, vol. 120(C), pages 385-396.
    10. Christos S. Ioakimidis & Konstantinos N. Genikomsakis, 2018. "Integration of Seawater Pumped-Storage in the Energy System of the Island of São Miguel (Azores)," Sustainability, MDPI, vol. 10(10), pages 1-14, September.
    11. Manuel Uche-Soria & Carlos Rodríguez-Monroy, 2018. "Special Regulation of Isolated Power Systems: The Canary Islands, Spain," Sustainability, MDPI, vol. 10(7), pages 1-20, July.
    12. Stefanos Ntomalis & Petros Iliadis & Konstantinos Atsonios & Athanasios Nesiadis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Dynamic Modeling and Simulation of Non-Interconnected Systems under High-RES Penetration: The Madeira Island Case," Energies, MDPI, vol. 13(21), pages 1-25, November.
    13. Francisco Briongos & Carlos A. Platero & José A. Sánchez-Fernández & Christophe Nicolet, 2020. "Evaluation of the Operating Efficiency of a Hybrid Wind–Hydro Powerplant," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
    14. Martínez-Lucas, Guillermo & Sarasúa, José Ignacio & Sánchez-Fernández, José Ángel & Wilhelmi, José Román, 2015. "Power-frequency control of hydropower plants with long penstocks in isolated systems with wind generation," Renewable Energy, Elsevier, vol. 83(C), pages 245-255.
    15. Elías Jesús Medina-Domínguez & José F. Medina-Padrón, 2015. "Critical Clearing Time and Wind Power in Small Isolated Power Systems Considering Inertia Emulation," Energies, MDPI, vol. 8(11), pages 1-16, November.
    16. Zanbin Wang & Chaoshun Li & Xinjie Lai & Nan Zhang & Yanhe Xu & Jinjiao Hou, 2018. "An Integrated Start-Up Method for Pumped Storage Units Based on a Novel Artificial Sheep Algorithm," Energies, MDPI, vol. 11(1), pages 1-29, January.
    17. Julia Merino & Patricio Mendoza-Araya & Carlos Veganzones, 2014. "State of the Art and Future Trends in Grid Codes Applicable to Isolated Electrical Systems," Energies, MDPI, vol. 7(12), pages 1-19, November.
    18. Chen, A.A. & Stephens, A.J. & Koon Koon, R. & Ashtine, M. & Mohammed-Koon Koon, K, 2020. "Pathways to climate change mitigation and stable energy by 100% renewable for a small island: Jamaica as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    19. Grażyna Frydrychowicz-Jastrzębska, 2018. "El Hierro Renewable Energy Hybrid System: A Tough Compromise," Energies, MDPI, vol. 11(10), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
    3. Kaldellis, J.K. & Kapsali, M. & Tiligadas, D., 2012. "Presentation of a stochastic model estimating the wind energy contribution in remote island electrical networks," Applied Energy, Elsevier, vol. 97(C), pages 68-76.
    4. Kapsali, M. & Kaldellis, J.K., 2010. "Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms," Applied Energy, Elsevier, vol. 87(11), pages 3475-3485, November.
    5. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    6. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    7. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    8. Helge Bormann & Inge Andersen Martinez, 2014. "Towards an Indicator Based Framework Analysing the Suitability of Existing Dams for Energy Storage," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1613-1630, April.
    9. Bhandari, Binayak & Lee, Kyung-Tae & Lee, Caroline Sunyong & Song, Chul-Ki & Maskey, Ramesh K. & Ahn, Sung-Hoon, 2014. "A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources," Applied Energy, Elsevier, vol. 133(C), pages 236-242.
    10. Chang, Martin K. & Eichman, Joshua D. & Mueller, Fabian & Samuelsen, Scott, 2013. "Buffering intermittent renewable power with hydroelectric generation: A case study in California," Applied Energy, Elsevier, vol. 112(C), pages 1-11.
    11. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni, 2015. "Embodied CO2 emissions and cross-border electricity trade in Europe: Rebalancing burden sharing with energy storage," Applied Energy, Elsevier, vol. 143(C), pages 283-300.
    12. Flora, Rui & Marques, António Cardoso & Fuinhas, José Alberto, 2014. "Wind power idle capacity in a panel of European countries," Energy, Elsevier, vol. 66(C), pages 823-830.
    13. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    14. Denault, Michel & Dupuis, Debbie & Couture-Cardinal, Sébastien, 2009. "Complementarity of hydro and wind power: Improving the risk profile of energy inflows," Energy Policy, Elsevier, vol. 37(12), pages 5376-5384, December.
    15. Reuter, Wolf Heinrich & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael, 2012. "Investment in wind power and pumped storage in a real options model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2242-2248.
    16. Milad Ghaisi & Milad Rahmani & Pedram Gharghabi & Ali Zoghi & Seyed Hossein Hosseinian, 2017. "Scheduling a Wind Hydro-Pumped-Storage Unit Considering the Economical Optimization," Post-Print hal-01478231, HAL.
    17. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    18. Lin, Boqiang & Wu, Ya & Zhang, Li, 2012. "Electricity saving potential of the power generation industry in China," Energy, Elsevier, vol. 40(1), pages 307-316.
    19. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    20. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:7:p:2351-2369:d:18775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.