IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i7p612-d585279.html
   My bibliography  Save this article

Patterns of Use of Residue Biomass in Cereal–Sheep Production Systems of North Africa: Case of Tunisia

Author

Listed:
  • Wafa Ameur

    (Institut Supérieur D’agriculture de Chott Mariem (ISA CM), University of Sousse, 4042 Sousse, Tunisia)

  • Aymen Frija

    (International Center for Agricultural Research in the Dry Areas (ICARDA), INRAT-Rue HédiKarray-CP, 2049 Ariana, Tunisia)

  • Mohamed Arbi Abdeladhim

    (Ecole Supérieure D’agriculture Morgane (ESAM), University of Carthage, 1100 Zaghouan, Tunisia)

  • Chokri Thabet

    (Institut Supérieur D’agriculture de Chott Mariem (ISA CM), University of Sousse, 4042 Sousse, Tunisia)

Abstract

This paper analyzes the complex relationships of factors influencing residue biomass management in cereal–sheep production systems in semi-arid areas of Tunisia. The Bayesian belief network (BBN) methodology was applied to identify factors enabling the better management of crop residue (CR) at the farm level. Data were collected from 152 farms located in the governorate of Siliana in north-west Tunisia. After designing the complex interactions between different variables that have an influence on the allocation of CR, BBN was also applied as a predictive model by inserting evidence conditional probabilities on the quantity of CR left on the soil and simulating the incurrent changes in the probability state of the remaining network variables. The results show that around 70% of farmers in our sample retain an overall quantity of CR lower than 200 kg/ha. The share of livestock income, livestock herds, cost of livestock feed, and off-farm income are all factors that have a strong influence on residue biomass management.

Suggested Citation

  • Wafa Ameur & Aymen Frija & Mohamed Arbi Abdeladhim & Chokri Thabet, 2021. "Patterns of Use of Residue Biomass in Cereal–Sheep Production Systems of North Africa: Case of Tunisia," Agriculture, MDPI, vol. 11(7), pages 1-18, June.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:612-:d:585279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/7/612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/7/612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Homann-Kee Tui, Sabine & Valbuena, Diego & Masikati, Patricia & Descheemaeker, Katrien & Nyamangara, Justice & Claessens, Lieven & Erenstein, Olaf & van Rooyen, Andre & Nkomboni, Daniel, 2015. "Economic trade-offs of biomass use in crop-livestock systems: Exploring more sustainable options in semi-arid Zimbabwe," Agricultural Systems, Elsevier, vol. 134(C), pages 48-60.
    2. Jaleta, Moti & Kassie, Menale & Shiferaw, Bekele, 2013. "Tradeoffs in crop residue utilization in mixed crop–livestock systems and implications for conservation agriculture," Agricultural Systems, Elsevier, vol. 121(C), pages 96-105.
    3. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    4. Kleemann, Janina & Celio, Enrico & Fürst, Christine, 2018. "Reprint of “Validation approaches of an expert-based Bayesian Belief Network in northern Ghana, West Africa”," Ecological Modelling, Elsevier, vol. 371(C), pages 101-118.
    5. Blessing Mhlanga & Tarirai Muoni, 2014. "Crop Residue Management in Conservation Agriculture Systems in Zimbabwe Smallholder Farming Sector: Importance, Management Challenges and Possible Solutions," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society, vol. 4(5), pages 333-340.
    6. Baudron, Frédéric & Delmotte, Sylvestre & Corbeels, Marc & Herrera, Juan M. & Tittonell, Pablo, 2015. "Multi-scale trade-off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid-Zambezi Valley, Zimbabwe," Agricultural Systems, Elsevier, vol. 134(C), pages 97-106.
    7. Mhlanga, Blessing & Muoni, Tarirai, 2014. "Crop Residue Management in Conservation Agriculture Systems in Zimbabwe Smallholder Farming Sector: Importance, Management Challenges and Possible Solutions," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 4(05), pages 1-8, May.
    8. Blessing Mhlanga & Tarirai Muoni, 2014. "Crop Residue Management in Conservation Agriculture Systems in Zimbabwe Smallholder Farming Sector: Importance, Management Challenges and Possible Solutions," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 4(5), pages 333-340, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hajer Guesmi & Cyrine Darej & Piebiep Goufo & Salah Ben Youssef & Mohamed Chakroun & Hichem Ben Salem & Henrique Trindade & Nizar Moujahed, 2022. "Stubble Quality of Wheat Grown under No-Tillage and Conventional Tillage Systems, and Effects of Stubble on the Fermentation Profile of Grazing Ewes’ Ruminal Fluid," Agriculture, MDPI, vol. 12(4), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olson, Kent & Gauto, Victor & Erenstein, Olaf & Teufel, Nils & Swain, Braja & Tui, Sabine Homann-Kee & Duncan, Alan, 2021. "Estimating Farmers’ Internal Value of Crop Residues in Smallholder Crop-Livestock Systems: A South Asia Case Study," 2021 Conference, August 17-31, 2021, Virtual 315188, International Association of Agricultural Economists.
    2. Tittonell, Pablo & Gérard, Bruno & Erenstein, Olaf, 2015. "Tradeoffs around crop residue biomass in smallholder crop-livestock systems – What’s next?," Agricultural Systems, Elsevier, vol. 134(C), pages 119-128.
    3. Assogba, Gildas G.C. & Adam, Myriam & Berre, David & Descheemaeker, Katrien, 2022. "Managing biomass in semi-arid Burkina Faso: Strategies and levers for better crop and livestock production in contrasted farm systems," Agricultural Systems, Elsevier, vol. 201(C).
    4. Christian Thierfelder & Pauline Chivenge & Walter Mupangwa & Todd S. Rosenstock & Christine Lamanna & Joseph X. Eyre, 2017. "How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(3), pages 537-560, June.
    5. Shikuku, Kelvin M. & Valdivia, Roberto O. & Paul, Birthe K. & Mwongera, Caroline & Winowiecki, Leigh & Läderach, Peter & Herrero, Mario & Silvestri, Silvia, 2017. "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach," Agricultural Systems, Elsevier, vol. 151(C), pages 204-216.
    6. Hajer Guesmi & Cyrine Darej & Piebiep Goufo & Salah Ben Youssef & Mohamed Chakroun & Hichem Ben Salem & Henrique Trindade & Nizar Moujahed, 2022. "Stubble Quality of Wheat Grown under No-Tillage and Conventional Tillage Systems, and Effects of Stubble on the Fermentation Profile of Grazing Ewes’ Ruminal Fluid," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    7. Paswel P. Marenya & Menale Kassie & Moti Jaleta & Dil Bahadur Rahut & Olaf Erenstein, 2017. "Predicting minimum tillage adoption among smallholder farmers using micro-level and policy variables," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 5(1), pages 1-22, December.
    8. Olaf Erenstein & Moti Jaleta & Kai Sonder & Khondoker Mottaleb & B.M. Prasanna, 2022. "Global maize production, consumption and trade: trends and R&D implications," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1295-1319, October.
    9. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    10. Ermias Engida Legesse & Amit Kumar Srivastava & Arnim Kuhn & Thomas Gaiser, 2019. "Household Welfare Implications of Better Fertilizer Access and Lower Use Inefficiency: Long-Term Scenarios for Ethiopia," Sustainability, MDPI, vol. 11(14), pages 1-24, July.
    11. Komarek, Adam M. & Kwon, Hoyoung & Haile, Beliyou & Thierfelder, Christian & Mutenje, Munyaradzi J. & Azzarri, Carlo, 2019. "From plot to scale: ex-ante assessment of conservation agriculture in Zambia," Agricultural Systems, Elsevier, vol. 173(C), pages 504-518.
    12. Muhammad Haseeb Raza & Muhammad Abid & Muhammad Faisal & Tingwu Yan & Shoaib Akhtar & K. M. Mehedi Adnan, 2022. "Environmental and Health Impacts of Crop Residue Burning: Scope of Sustainable Crop Residue Management Practices," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    13. Poole, Nigel & Donovan, Jason & Erenstein, Olaf, 2021. "Viewpoint: Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health," Food Policy, Elsevier, vol. 100(C).
    14. Huet, E.K. & Adam, M. & Giller, K.E. & Descheemaeker, K., 2020. "Diversity in perception and management of farming risks in southern Mali," Agricultural Systems, Elsevier, vol. 184(C).
    15. Urquía-Grande, Elena & Cano-Montero, Elisa I. & Pérez-Estébanez, Raquel & Chamizo-González, Julián, 2018. "Agriculture, nutrition and economics through training: A virtuous cycle in rural Ethiopia," Land Use Policy, Elsevier, vol. 79(C), pages 707-716.
    16. Li, Jintao & Li, Yixue, 2019. "Influence measurement of rapid urbanization on agricultural production factors based on provincial panel data," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 69-77.
    17. Tilahun Woldie Mengistu & Saurabh Gupta & Regina Birner, 2018. "Analysis of maize biomass use in Ethiopia and its implications for food security and the bioeconomy," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(6), pages 1631-1648, December.
    18. Kanter, David R. & Musumba, Mark & Wood, Sylvia L.R. & Palm, Cheryl & Antle, John & Balvanera, Patricia & Dale, Virginia H. & Havlik, Petr & Kline, Keith L. & Scholes, R.J. & Thornton, Philip & Titton, 2018. "Evaluating agricultural trade-offs in the age of sustainable development," Agricultural Systems, Elsevier, vol. 163(C), pages 73-88.
    19. Nhantumbo, Nascimento S. & Zivale, Clemente O. & Nhantumbo, Ivete S. & Gomes, Ana M., 2016. "Making agricultural intervention attractive to farmers in Africa through inclusive innovation systems," World Development Perspectives, Elsevier, vol. 4(C), pages 19-23.
    20. Fang, Guozhu & Zhang, Xiaoheng & Qi, Chunjie, 2021. "Are Integrated Crop-Livestock Systems More Technical Efficiency? Evidence from Small Farmers in China," 2021 Conference, August 17-31, 2021, Virtual 315129, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:7:p:612-:d:585279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.