IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v75y2023ics0160791x23001525.html
   My bibliography  Save this article

Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: A case study in northern Sweden

Author

Listed:
  • Liu, Bokai
  • Penaka, Santhan Reddy
  • Lu, Weizhuo
  • Feng, Kailun
  • Rebbling, Anders
  • Olofsson, Thomas

Abstract

This paper presents an open digital ecosystem based on a web-framework with a functional back-end server for user-centric energy retrofits. This data-driven web framework is proposed for building energy renovation benchmarking as part of an energy advisory service development for the Västerbotten region, Sweden. A 4-tier architecture is developed and programmed to achieve users’ interactive design and visualization via a web browser. Six data-driven methods are integrated into this framework as backend server functions. Based on these functions, users can be supported by this decision-making system when they want to know if a renovation is needed or not. Meanwhile, influential factors (input values) from the database that affect energy usage in buildings are to be analyzed via quantitative analysis, i.e., sensitivity analysis. The contributions to this open ecosystem platform in energy renovation are: 1) A systematic framework that can be applied to energy efficiency with data-driven approaches, 2) A user-friendly web-based platform that is easy and flexible to use, and 3) integrated quantitative analysis into the framework to obtain the importance among all the relevant factors. This computational framework is designed for stakeholders who would like to get preliminary information in energy advisory. The improved energy advisor service enabled by the developed platform can significantly reduce the cost of decision-making, enabling decision-makers to participate in such professional knowledge-required decisions in a deliberate and efficient manner. This work is funded by the AURORAL project, which integrates an open and interoperable digital platform, demonstrated through regional large-scale pilots in different countries of Europe by interdisciplinary applications.

Suggested Citation

  • Liu, Bokai & Penaka, Santhan Reddy & Lu, Weizhuo & Feng, Kailun & Rebbling, Anders & Olofsson, Thomas, 2023. "Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: A case study in northern Sweden," Technology in Society, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:teinso:v:75:y:2023:i:c:s0160791x23001525
    DOI: 10.1016/j.techsoc.2023.102347
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X23001525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2023.102347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linnea Löfving & Viktoria Kamuf & Timothy Heleniak & Sabine Weck & Gustaf Norlén, 2022. "Can digitalization be a tool to overcome spatial injustice in sparsely populated regions? The cases of Digital Västerbotten (Sweden) and Smart Country Side (Germany)," European Planning Studies, Taylor & Francis Journals, vol. 30(5), pages 917-934, May.
    2. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Hussain, Shahid & Ahonen, Valtteri & Karasu, Taha & Leviäkangas, Pekka, 2023. "Sustainability of smart rural mobility and tourism: A key performance indicators-based approach," Technology in Society, Elsevier, vol. 74(C).
    4. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
    5. Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    6. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Sobol’, I.M. & Tarantola, S. & Gatelli, D. & Kucherenko, S.S. & Mauntz, W., 2007. "Estimating the approximation error when fixing unessential factors in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 957-960.
    8. Gómez-Carmona, Oihane & Buján-Carballal, David & Casado-Mansilla, Diego & López-de-Ipiña, Diego & Cano-Benito, Juan & Cimmino, Andrea & Poveda-Villalón, María & García-Castro, Raúl & Almela-Miralles, , 2023. "Mind the gap: The AURORAL ecosystem for the digital transformation of smart communities and rural areas," Technology in Society, Elsevier, vol. 74(C).
    9. Sanhudo, Luís & Ramos, Nuno M.M. & Poças Martins, João & Almeida, Ricardo M.S.F. & Barreira, Eva & Simões, M. Lurdes & Cardoso, Vítor, 2018. "Building information modeling for energy retrofitting – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 249-260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Bokai & Wang, Yizheng & Rabczuk, Timon & Olofsson, Thomas & Lu, Weizhuo, 2024. "Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks," Renewable Energy, Elsevier, vol. 220(C).
    2. Marcon, Arthur & Ribeiro, José Luis Duarte & Olteanu, Yasmin & Fichter, Klaus, 2024. "How the interplay between innovation ecosystems and market contingency factors impacts startup innovation," Technology in Society, Elsevier, vol. 76(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minyoung Kwon & Erwin Mlecnik & Vincent Gruis, 2021. "Business Model Development for Temporary Home Renovation Consultancy Centres: Experiences from European Pop-Ups," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    2. Xun Liu & Zhenhan Ding & Xiaobo Li & Zhiyuan Xue, 2023. "Research Progress, Hotspots, and Trends of Using BIM to Reduce Building Energy Consumption: Visual Analysis Based on WOS Database," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    3. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    4. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    5. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    6. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria & Tavares, Jose, 2021. "Long term performance analysis of low concentrating photovoltaic (LCPV) systems for building retrofit," Applied Energy, Elsevier, vol. 300(C).
    7. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Sobol' Ilya M. & Shukhman Boris V., 2007. "On Global Sensitivity Indices: Monte Carlo Estimates Affected by Random Errors," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 89-97, April.
    9. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    10. Medeiros-Sousa, Antônio Ralph & Lange, Martin & Mucci, Luis Filipe & Marrelli, Mauro Toledo & Grimm, Volker, 2024. "Modelling the transmission and spread of yellow fever in forest landscapes with different spatial configurations," Ecological Modelling, Elsevier, vol. 489(C).
    11. Giovanna Monique Alelvan & Hugo Naves Coelho Santos & Rodrigo Cesar Pierozan & Leise Kelli de Oliveira, 2023. "Key Success Factors for the Practical Application of New Geomaterials," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    12. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    13. Avichal Malhotra & Simon Raming & Jérôme Frisch & Christoph van Treeck, 2021. "Open-Source Tool for Transforming CityGML Levels of Detail," Energies, MDPI, vol. 14(24), pages 1-26, December.
    14. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Viviane M. Gomes & Joao R. B. Paiva & Marcio R. C. Reis & Gabriel A. Wainer & Wesley P. Calixto, 2019. "Mechanism for Measuring System Complexity Applying Sensitivity Analysis," Complexity, Hindawi, vol. 2019, pages 1-12, April.
    16. Kucherenko, S. & Song, S., 2017. "Different numerical estimators for main effect global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 222-238.
    17. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    18. Sheng-Yuan Wang & Kyung-Tae Lee & Ju-Hyung Kim, 2022. "Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game," Sustainability, MDPI, vol. 14(13), pages 1-32, June.
    19. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    20. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:75:y:2023:i:c:s0160791x23001525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.