IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v90y2023ics0038012123002306.html
   My bibliography  Save this article

A multiple criteria approach for ship risk classification: An alternative to the Paris MoU Ship Risk Profile

Author

Listed:
  • Dinis, Duarte Caldeira
  • Figueira, José Rui
  • Teixeira, Ângelo Palos

Abstract

The Paris Memorandum of Understanding on Port State Control (Paris MoU), adopted in the European Union (EU) under Directive 2009/16/EC, as amended by Directive 2013/38/EU, is responsible for controlling substandard shipping in European waters and, consequently, increasing the standards of safety, pollution prevention, and onboard living and working conditions. Since 2011, the Memorandum adopted a system of points, named the “Ship Risk Profile” (SRP), under which each ship is assigned a risk profile according to its score on a set of criteria. Being a multiple criteria decision aiding (MCDA) tool at its core, comprising criteria, weights, and risk categories, limited research has been performed on the SRP from an MCDA perspective. The purpose of this paper is to propose an MCDA approach for ship risk classification through the Deck of Cards Method (DCM). The DCM is particularly suitable within this context as it allows, intuitively for the decision-maker, to model preference among different criteria and among different levels on criteria scales. First, a framework is built, based on the criteria established in the SRP. Second, the DCM is used to build the MCDA model, including the definition of the criteria value functions and criteria weights. Finally, the proposed MCDA model is applied to a data set of ships and the results are discussed. Robust results have been obtained with the proposed approach, making it a potential alternative to the current SRP.

Suggested Citation

  • Dinis, Duarte Caldeira & Figueira, José Rui & Teixeira, Ângelo Palos, 2023. "A multiple criteria approach for ship risk classification: An alternative to the Paris MoU Ship Risk Profile," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
  • Handle: RePEc:eee:soceps:v:90:y:2023:i:c:s0038012123002306
    DOI: 10.1016/j.seps.2023.101718
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123002306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinto, F.S. & Costa, A.S. & Figueira, J.R. & Marques, R.C., 2017. "The quality of service: An overall performance assessment for water utilities," Omega, Elsevier, vol. 69(C), pages 115-125.
    2. Merad, Myriam & Dechy, Nicolas & Serir, Lisa & Grabisch, Michel & Marcel, Frédéric, 2013. "Using a multi-criteria decision aid methodology to implement sustainable development principles within an organization," European Journal of Operational Research, Elsevier, vol. 224(3), pages 603-613.
    3. Kodikara, P.N. & Perera, B.J.C. & Kularathna, M.D.U.P., 2010. "Stakeholder preference elicitation and modelling in multi-criteria decision analysis - A case study on urban water supply," European Journal of Operational Research, Elsevier, vol. 206(1), pages 209-220, October.
    4. Cavallaro, Fausto, 2010. "A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method," Energy Policy, Elsevier, vol. 38(1), pages 463-474, January.
    5. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Riley, David & Schaafsma, Marije & Marin-Moreno, Héctor & Minshull, Tim A., 2020. "A social, environmental and economic evaluation protocol for potential gas hydrate exploitation projects," Applied Energy, Elsevier, vol. 263(C).
    7. James S. Dyer, 2016. "Multiattribute Utility Theory (MAUT)," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 285-314, Springer.
    8. Dawson, Lucas & Schlyter, Peter, 2012. "Less is more: Strategic scale site suitability for concentrated solar thermal power in Western Australia," Energy Policy, Elsevier, vol. 47(C), pages 91-101.
    9. Figueira, José Rui & Oliveira, Henrique M. & Serro, Ana Paula & Colaço, Rogério & Froes, Filipe & Robalo Cordeiro, Carlos & Diniz, António & Guimarães, Miguel, 2023. "A multiple criteria approach for building a pandemic impact assessment composite indicator: The case of COVID-19 in Portugal," European Journal of Operational Research, Elsevier, vol. 309(2), pages 795-818.
    10. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834, November.
    11. Corrente, S. & Figueira, J.R. & Greco, S., 2021. "Pairwise comparison tables within the deck of cards method in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 291(2), pages 738-756.
    12. Thomas L. Saaty, 2016. "The Analytic Hierarchy and Analytic Network Processes for the Measurement of Intangible Criteria and for Decision-Making," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 363-419, Springer.
    13. Lowe, A. V., 1982. "A move against substandard shipping," Marine Policy, Elsevier, vol. 6(4), pages 326-330, October.
    14. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.
    15. Govindan, Kannan & Kadziński, Miłosz & Sivakumar, R., 2017. "Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain," Omega, Elsevier, vol. 71(C), pages 129-145.
    16. Pictet, Jacques & Bollinger, Dominique, 2008. "Extended use of the cards procedure as a simple elicitation technique for MAVT. Application to public procurement in Switzerland," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1300-1307, March.
    17. Costa, Ana Sara & Corrente, Salvatore & Greco, Salvatore & Figueira, José Rui & Borbinha, José, 2020. "A robust hierarchical nominal multicriteria classification method based on similarity and dissimilarity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 986-1001.
    18. Silveira, P. & Teixeira, A.P. & Figueira, J.R. & Guedes Soares, C., 2021. "A multicriteria outranking approach for ship collision risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    19. Figueira, José Rui & Greco, Salvatore & Slowinski, Roman, 2009. "Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method," European Journal of Operational Research, Elsevier, vol. 195(2), pages 460-486, June.
    20. James S. Dyer & Rakesh K. Sarin, 1979. "Measurable Multiattribute Value Functions," Operations Research, INFORMS, vol. 27(4), pages 810-822, August.
    21. Cariou, Pierre & Mejia, Maximo Q. & Wolff, Francois-Charles, 2009. "Evidence on target factors used for port state control inspections," Marine Policy, Elsevier, vol. 33(5), pages 847-859, September.
    22. Angilella, Silvia & Mazzù, Sebastiano, 2015. "The financing of innovative SMEs: A multicriteria credit rating model," European Journal of Operational Research, Elsevier, vol. 244(2), pages 540-554.
    23. Siskos, Eleftherios & Tsotsolas, Nikos, 2015. "Elicitation of criteria importance weights through the Simos method: A robustness concern," European Journal of Operational Research, Elsevier, vol. 246(2), pages 543-553.
    24. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    25. Jean-M. Martel & Benedetto Matarazzo, 2016. "Other Outranking Approaches," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 221-282, Springer.
    26. Figueira, Jose & Roy, Bernard, 2002. "Determining the weights of criteria in the ELECTRE type methods with a revised Simos' procedure," European Journal of Operational Research, Elsevier, vol. 139(2), pages 317-326, June.
    27. Graziano, Armando & Mejia, Maximo Q. & Schröder-Hinrichs, Jens-Uwe, 2018. "Achievements and challenges on the implementation of the European Directive on Port State Control," Transport Policy, Elsevier, vol. 72(C), pages 97-108.
    28. Harrison Mutikanga & Saroj Sharma & Kalanithy Vairavamoorthy, 2011. "Multi-criteria Decision Analysis: A Strategic Planning Tool for Water Loss Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3947-3969, November.
    29. Yang, Zhisen & Yang, Zaili & Yin, Jingbo & Qu, Zhuohua, 2018. "A risk-based game model for rational inspections in port state control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 477-495.
    30. Haurant, P. & Oberti, P. & Muselli, M., 2011. "Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework," Energy Policy, Elsevier, vol. 39(2), pages 676-688, February.
    31. Carlos A. Bana e Costa & Jean-Marie De Corte & Jean-Claude Vansnick, 2016. "On the Mathematical Foundations of MACBETH," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 421-463, Springer.
    32. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    33. Doumpos, Michalis & Figueira, José Rui, 2019. "A multicriteria outranking approach for modeling corporate credit ratings: An application of the Electre Tri-nC method," Omega, Elsevier, vol. 82(C), pages 166-180.
    34. Bernard Roy, 2016. "Paradigms and Challenges," International Series in Operations Research & Management Science, in: Salvatore Greco & Matthias Ehrgott & José Rui Figueira (ed.), Multiple Criteria Decision Analysis, edition 2, chapter 0, pages 19-39, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Figueira, José Rui & Oliveira, Henrique M. & Serro, Ana Paula & Colaço, Rogério & Froes, Filipe & Robalo Cordeiro, Carlos & Diniz, António & Guimarães, Miguel, 2023. "A multiple criteria approach for building a pandemic impact assessment composite indicator: The case of COVID-19 in Portugal," European Journal of Operational Research, Elsevier, vol. 309(2), pages 795-818.
    2. Siskos, Eleftherios & Tsotsolas, Nikos, 2015. "Elicitation of criteria importance weights through the Simos method: A robustness concern," European Journal of Operational Research, Elsevier, vol. 246(2), pages 543-553.
    3. Ana Sara Costa & José Rui Figueira & José Borbinha, 2022. "A multiple criteria socio-technical approach for the Portuguese Army Special Forces recruitment," 4OR, Springer, vol. 20(2), pages 289-331, June.
    4. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    5. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    6. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.
    7. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2022. "Bayesian ordinal regression for multiple criteria choice and ranking," European Journal of Operational Research, Elsevier, vol. 299(2), pages 600-620.
    8. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Corrente, S. & Figueira, J.R. & Greco, S., 2021. "Pairwise comparison tables within the deck of cards method in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 291(2), pages 738-756.
    10. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Francis Marleau Donais & Irène Abi-Zeid & E. Owen D. Waygood & Roxane Lavoie, 2019. "A review of cost–benefit analysis and multicriteria decision analysis from the perspective of sustainable transport in project evaluation," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 327-358, November.
    12. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    13. Yang, Zhisen & Yu, Qing & Yang, Zaili & Wan, Chengpeng, 2024. "A data-driven Bayesian model for evaluating the duration of detention of ships in PSC inspections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    14. Pereira, André Alves & Pereira, Miguel Alves, 2023. "Energy storage strategy analysis based on the Choquet multi-criteria preference aggregation model: The Portuguese case," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    15. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    16. Pinho, Margarida & Costa, Ana Sara & Meneses, Marta & Manso, Joana, 2023. "A multiple criteria sorting method for supporting the maintenance management of medical ventilators: The case of Hospital da Luz Lisboa," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    17. Yan, Ran & Wang, Shuaian & Zhen, Lu, 2023. "An extended smart “predict, and optimize” (SPO) framework based on similar sets for ship inspection planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    18. Wang, Yuhong & Zhang, Fan & Yang, Zhisen & Yang, Zaili, 2021. "Incorporation of deficiency data into the analysis of the dependency and interdependency among the risk factors influencing port state control inspection," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    19. Govindan, Kannan & Kadziński, Miłosz & Ehling, Ronja & Miebs, Grzegorz, 2019. "Selection of a sustainable third-party reverse logistics provider based on the robustness analysis of an outranking graph kernel conducted with ELECTRE I and SMAA," Omega, Elsevier, vol. 85(C), pages 1-15.
    20. Junjie Fu & Xinqiang Chen & Shubo Wu & Chaojian Shi & Huafeng Wu & Jiansen Zhao & Pengwen Xiong, 2020. "Mining ship deficiency correlations from historical port state control (PSC) inspection data," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:90:y:2023:i:c:s0038012123002306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.