IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v90y2023ics0038012123002288.html
   My bibliography  Save this article

Designing an efficient humanitarian supply chain network during an emergency: A scenario-based multi-objective model

Author

Listed:
  • Jafarzadeh-Ghoushchi, Saeid
  • Asghari, Mohammad
  • Mardani, Abbas
  • Simic, Vladimir
  • Tirkolaee, Erfan Babaee

Abstract

Efficient humanitarian supply chain (HSC) management plays an underlying role in saving lives, reducing human torment, and contributing to sustainable development during a disaster. Accordingly, the issue of locating and allocating relief facilities in the first hours after the occurrence of a disaster has a great impact on providing timely service. This study addresses a sustainable location-allocation-inventory problem (LAIP) to design an efficient HSC through concurrently optimizing four objectives of fairness, timeliness, economic productivity, and social justice. To do so, a novel scenario-based multi-objective mixed-integer linear programming (MILP) model is developed to formulate the problem under uncertainty. According to this model, the process of taking care of injured people is carried out in three stages of decision-making. Maximum facilities for sending relief supplies are used to supply the demand at each stage. In addition, the three factors of supply, demand, and communication routes between the centers and the affected areas are defined as fuzzy random parameters. Since the proposed model contains multiple objectives, goal programming (GP) is applied to provide a single-objective model. The validation of the developed methodology is made with the help of an illustrative example in the literature, and the results are obtained and evaluated using sensitivity analysis of the objective functions’ weights. As one of the main findings, sending the maximum available supplies in MDCs to the affected areas in three stages using surplus vehicles is the best solution to cover the shortage of products. Finally, it is revealed that the proposed methodology can be utilized by managers to tackle the complexity of the problem during natural disasters.

Suggested Citation

  • Jafarzadeh-Ghoushchi, Saeid & Asghari, Mohammad & Mardani, Abbas & Simic, Vladimir & Tirkolaee, Erfan Babaee, 2023. "Designing an efficient humanitarian supply chain network during an emergency: A scenario-based multi-objective model," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
  • Handle: RePEc:eee:soceps:v:90:y:2023:i:c:s0038012123002288
    DOI: 10.1016/j.seps.2023.101716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123002288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murali, Pavankumar & Ordóñez, Fernando & Dessouky, Maged M., 2012. "Facility location under demand uncertainty: Response to a large-scale bio-terror attack," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 78-87.
    2. Youqiang Sun & Yeqing Ren & Xingjuan Cai, 2020. "Biobjective Emergency Logistics Scheduling Model Based on Uncertain Traffic Conditions," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, January.
    3. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    4. Vosooghi, Zeinab & Mirzapour Al-e-hashem, S.M.J. & Lahijanian, Behshad, 2022. "Scenario-based redesigning of a relief supply-chain network by considering humanitarian constraints, triage, and volunteers’ help," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    5. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    6. Ransikarbum, Kasin & Mason, Scott J., 2016. "Goal programming-based post-disaster decision making for integrated relief distribution and early-stage network restoration," International Journal of Production Economics, Elsevier, vol. 182(C), pages 324-341.
    7. Xuejie Bai, 2016. "Two-Stage Multiobjective Optimization for Emergency Supplies Allocation Problem under Integrated Uncertainty," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-13, April.
    8. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2020. "Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake)," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    9. Jae-Dong Hong & Ki-Young Jeong, 2019. "Humanitarian supply chain network design using data envelopment analysis and multi-objective programming models," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 13(5), pages 651-680.
    10. Abazari, Seyed Reza & Aghsami, Amir & Rabbani, Masoud, 2021. "Prepositioning and distributing relief items in humanitarian logistics with uncertain parameters," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    11. Akgün, İbrahim & Gümüşbuğa, Ferhat & Tansel, Barbaros, 2015. "Risk based facility location by using fault tree analysis in disaster management," Omega, Elsevier, vol. 52(C), pages 168-179.
    12. Rawls, Carmen G. & Turnquist, Mark A., 2012. "Pre-positioning and dynamic delivery planning for short-term response following a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 46-54.
    13. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    14. Sheikholeslami, Mahnaz & Zarrinpoor, Naeme, 2023. "Designing an integrated humanitarian logistics network for the preparedness and response phases under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    15. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    16. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.
    17. Loree, Nick & Aros-Vera, Felipe, 2018. "Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 1-24.
    18. Jamie Dekle & Mariel S. Lavieri & Erica Martin & Hülya Emir-Farinas & Richard L. Francis, 2005. "A Florida County Locates Disaster Recovery Centers," Interfaces, INFORMS, vol. 35(2), pages 133-139, April.
    19. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    20. Chang, Mei-Shiang & Tseng, Ya-Ling & Chen, Jing-Wen, 2007. "A scenario planning approach for the flood emergency logistics preparation problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 737-754, November.
    21. Christian Wankmüller & Gerald Reiner, 2020. "Coordination, cooperation and collaboration in relief supply chain management," Journal of Business Economics, Springer, vol. 90(2), pages 239-276, March.
    22. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    23. Fathalikhani, Somayeh & Hafezalkotob, Ashkan & Soltani, Roya, 2020. "Government intervention on cooperation, competition, and coopetition of humanitarian supply chains," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    3. Maass, Kayse Lee & Trapp, Andrew C. & Konrad, Renata, 2020. "Optimizing placement of residential shelters for human trafficking survivors," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    4. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    5. Tanzid Hasnain & Irem Sengul Orgut & Julie Simmons Ivy, 2021. "Elicitation of Preference among Multiple Criteria in Food Distribution by Food Banks," Production and Operations Management, Production and Operations Management Society, vol. 30(12), pages 4475-4500, December.
    6. Dönmez, Zehranaz & Kara, Bahar Y. & Karsu, Özlem & Saldanha-da-Gama, Francisco, 2021. "Humanitarian facility location under uncertainty: Critical review and future prospects," Omega, Elsevier, vol. 102(C).
    7. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    8. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    10. Baharmand, Hossein & Comes, Tina & Lauras, Matthieu, 2019. "Bi-objective multi-layer location–allocation model for the immediate aftermath of sudden-onset disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 86-110.
    11. Loree, Nick & Aros-Vera, Felipe, 2018. "Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 1-24.
    12. Ling Gai & Zhiyue Peng & Jiming Zhang & Jiafu Zhang, 0. "Emergency medical center location problem with people evacuation solved by extended TODIM and objective programming," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-26.
    13. Paul, Jomon Aliyas & MacDonald, Leo, 2016. "Optimal location, capacity and timing of stockpiles for improved hurricane preparedness," International Journal of Production Economics, Elsevier, vol. 174(C), pages 11-28.
    14. Sheikholeslami, Mahnaz & Zarrinpoor, Naeme, 2023. "Designing an integrated humanitarian logistics network for the preparedness and response phases under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    15. Jin, Jian Gang & Shen, Yifan & Hu, Hao & Fan, Yiqun & Yu, Mingjian, 2021. "Optimizing underground shelter location and mass pedestrian evacuation in urban community areas: A case study of Shanghai," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 124-138.
    16. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    17. Prima Denny Sentia & Syaimak Abdul Shukor & Amelia Natasya Abdul Wahab & Muriati Mukhtar, 2023. "Logistic distribution in humanitarian supply chain management: a thematic literature review and future research," Annals of Operations Research, Springer, vol. 323(1), pages 175-201, April.
    18. Ghavamifar, Ali & Torabi, S. Ali & Moshtari, Mohammad, 2022. "A hybrid relief procurement contract for humanitarian logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    19. Ahmad Mohamadi & Saeed Yaghoubi & Mir Saman Pishvaee, 2019. "Fuzzy multi-objective stochastic programming model for disaster relief logistics considering telecommunication infrastructures: a case study," Operational Research, Springer, vol. 19(1), pages 59-99, March.
    20. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:90:y:2023:i:c:s0038012123002288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.