IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v66y2023ics027553192300137x.html
   My bibliography  Save this article

A hybrid approach for forecasting bitcoin series

Author

Listed:
  • Mtiraoui, Amine
  • Boubaker, Heni
  • BelKacem, Lotfi

Abstract

Bitcoin price prediction is a substantial challenge for cryptocurrency investors. This study offers an innovative scheme to predict Bitcoin returns and volatilities using a hybrid model that incorporates the autoregressive fractionally integrated moving average (ARFIMA), empirical wavelet (EW) transform, and local linear wavelet neural network (LLWNN) approaches to produce an ARFIMA-EWLLWNN model. Our methodologies integrate the advantages of the long-memory model, EW decomposition technique, artificial neural network structure, and backpropagation and particle swarm optimization learning algorithms. The experimental results of the optimized hybrid approach outperform some classic models by providing more accurate out-of-sample forecasts over longer horizons. The model proves to be the most appropriate Bitcoin forecasting technique. Moreover, the implemented method produces smaller prediction errors than other computing techniques.

Suggested Citation

  • Mtiraoui, Amine & Boubaker, Heni & BelKacem, Lotfi, 2023. "A hybrid approach for forecasting bitcoin series," Research in International Business and Finance, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:riibaf:v:66:y:2023:i:c:s027553192300137x
    DOI: 10.1016/j.ribaf.2023.102011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S027553192300137X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2023.102011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    2. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    3. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    4. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    5. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    6. Mokni, Khaled, 2021. "When, where, and how economic policy uncertainty predicts Bitcoin returns and volatility? A quantiles-based analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 65-73.
    7. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    8. Nicola Uras & Lodovica Marchesi & Michele Marchesi & Roberto Tonelli, 2020. "Forecasting Bitcoin closing price series using linear regression and neural networks models," Papers 2001.01127, arXiv.org.
    9. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2012. "Predicting BRICS Stock Returns Using ARFIMA Models," Working Papers 201235, University of Pretoria, Department of Economics.
    10. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Oxford University Press, vol. 5(1), pages 31-67.
    11. Chaim, Pedro & Laurini, Márcio P., 2018. "Volatility and return jumps in bitcoin," Economics Letters, Elsevier, vol. 173(C), pages 158-163.
    12. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    15. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models: The Model Confidence Set Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
    16. Anwar Hasan Abdullah Othman & Salina Kassim & Romzie Bin Rosman & Nur Harena Binti Redzuan, 2020. "Correction to: Prediction accuracy improvement for Bitcoin market prices based on symmetric volatility information using artificial neural network approach," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 331-331, October.
    17. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    18. Anwar Hasan Abdullah Othman & Salina Kassim & Romzie Bin Rosman & Nur Harena Binti Redzuan, 2020. "Prediction accuracy improvement for Bitcoin market prices based on symmetric volatility information using artificial neural network approach," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 314-330, October.
    19. Tripathy, Naliniprava, 2022. "Long memory and volatility persistence across BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 63(C).
    20. Rogier Quaedvlieg, 2021. "Multi-Horizon Forecast Comparison," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 40-53, January.
    21. Souhir Ben Amor & Heni Boubaker & Lotfi Belkacem, 2018. "Forecasting electricity spot price for Nord Pool market with a hybrid k‐factor GARMA–LLWNN model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 832-851, December.
    22. Afees A. Salisu & Kazeem Isah & Lateef O. Akanni, 2018. "Predicting the stock prices of G7 countries with Bitcoin prices," Working Papers 054, Centre for Econometric and Allied Research, University of Ibadan.
    23. Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
    24. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    25. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    26. Chen, An-Sing & Chang, Hung-Chou & Cheng, Lee-Young, 2019. "Time-varying Variance Scaling: Application of the Fractionally Integrated ARMA Model," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heni Boubaker & Bassem Saidane & Mouna Ben Saad Zorgati, 2022. "Modelling the dynamics of stock market in the gulf cooperation council countries: evidence on persistence to shocks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-22, December.
    2. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    3. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    4. Tan, Chia-Yen & Koh, You-Beng & Ng, Kok-Haur & Ng, Kooi-Huat, 2021. "Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    5. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    6. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    7. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    8. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    9. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    10. Omane-Adjepong, Maurice & Alagidede, Imhotep Paul, 2019. "Multiresolution analysis and spillovers of major cryptocurrency markets," Research in International Business and Finance, Elsevier, vol. 49(C), pages 191-206.
    11. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
    12. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    13. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    14. Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
    15. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    16. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    17. Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
    18. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Olubusoye, Olusanya E., 2019. "How persistent and dynamic inter-dependent are pricing of Bitcoin to other cryptocurrencies before and after 2017/18 crash?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    19. Tzouvanas, Panagiotis & Kizys, Renatas & Tsend-Ayush, Bayasgalan, 2020. "Momentum trading in cryptocurrencies: Short-term returns and diversification benefits," Economics Letters, Elsevier, vol. 191(C).
    20. Huthaifa Alqaralleh & Alaa Adden Abuhommous & Ahmad Alsaraireh, 2020. "Modelling and Forecasting the Volatility of Cryptocurrencies: A Comparison of Nonlinear GARCH-Type Models," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 11(4), pages 346-356, July.

    More about this item

    Keywords

    Artificial neural networks; Bitcoin; Empirical wavelet transform; Forecast performance; Long-memory process;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:66:y:2023:i:c:s027553192300137x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.