IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp976-990.html
   My bibliography  Save this article

Using renewable (solar) energy as a sustainable management pathway of lands highly sensitive to degradation in Romania. A countrywide analysis based on exploring the geographical and technical solar potentials

Author

Listed:
  • Prăvălie, Remus
  • Sîrodoev, Igor
  • Ruiz-Arias, José
  • Dumitraşcu, Monica

Abstract

Solar power is a major pillar of renewable energy, but there is a complicated dilemma on harvesting solar energy across extensive lands without affecting their agricultural potential. This dilemma could be addressed by developing solar energy systems in areas highly prone to land degradation, which are less feasible for agricultural crops and consequently preferred locations for solar electricity generation. In this context, the present study aims to investigate, for the first time, the feasibility of solar energy harvesting in lands that are highly sensitive to degradation in Romania, starting from the hypothesis that these lands with poor agro-ecological productivity can be a sustainable pathway for large-scale development of photovoltaic power. In line with this goal, complex and high-resolution data on solar energy and land degradation sensitivity were used, which were processed for modelling the key geographical and technical potentials of solar power. By investigating the solar electricity resources of lands critically exposed to degradation and feasible (without environmental constraints) for solar energy development, it was found that Romania holds a vast photovoltaic power potential, by far theoretically capable of meeting all the country's electrical needs. Quantitatively, the total solar energy potential that can be harvested annually from the critical landscapes reaches 1978 TWh, which is over thirty/forty times more than the annual mean electricity production (∼63 TWh)/consumption (∼47 TWh), recorded nationally in the past decade, from all renewable and non-renewable sources. This entire solar potential stretches across ∼30000 km2 (13% of the country) of lands with high degradative conditions, but which are geographically and ecologically suitable for solar applications. These findings can be useful for strengthening the country's energy security, for a sustainable management of national lands highly exposed to degradation, and for a more efficient implementation of several Sustainable Development Goals in Romania.

Suggested Citation

  • Prăvălie, Remus & Sîrodoev, Igor & Ruiz-Arias, José & Dumitraşcu, Monica, 2022. "Using renewable (solar) energy as a sustainable management pathway of lands highly sensitive to degradation in Romania. A countrywide analysis based on exploring the geographical and technical solar p," Renewable Energy, Elsevier, vol. 193(C), pages 976-990.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:976-990
    DOI: 10.1016/j.renene.2022.05.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122007005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    2. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    3. Janke, Jason R., 2010. "Multicriteria GIS modeling of wind and solar farms in Colorado," Renewable Energy, Elsevier, vol. 35(10), pages 2228-2234.
    4. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    5. Ruiz-Arias, J.A. & Terrados, J. & Pérez-Higueras, P. & Pozo-Vázquez, D. & Almonacid, G., 2012. "Assessment of the renewable energies potential for intensive electricity production in the province of Jaén, southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2994-3001.
    6. Katalin Bódis & Ioannis Kougias & Nigel Taylor & Arnulf Jäger-Waldau, 2019. "Solar Photovoltaic Electricity Generation: A Lifeline for the European Coal Regions in Transition," Sustainability, MDPI, vol. 11(13), pages 1-14, July.
    7. Veum, Karina & Bauknecht, Dierk, 2019. "How to reach the EU renewables target by 2030? An analysis of the governance framework," Energy Policy, Elsevier, vol. 127(C), pages 299-307.
    8. Prăvălie, Remus & Sîrodoev, Igor & Patriche, Cristian & Roșca, Bogdan & Piticar, Adrian & Bandoc, Georgeta & Sfîcă, Lucian & Tişcovschi, Adrian & Dumitraşcu, Monica & Chifiriuc, Carmen & Mănoiu, Valen, 2020. "The impact of climate change on agricultural productivity in Romania. A country-scale assessment based on the relationship between climatic water balance and maize yields in recent decades," Agricultural Systems, Elsevier, vol. 179(C).
    9. Perpiña Castillo, Carolina & Batista e Silva, Filipe & Lavalle, Carlo, 2016. "An assessment of the regional potential for solar power generation in EU-28," Energy Policy, Elsevier, vol. 88(C), pages 86-99.
    10. Alexandra Vrînceanu & Ines Grigorescu & Monica Dumitrașcu & Irena Mocanu & Cristina Dumitrică & Dana Micu & Gheorghe Kucsicsa & Bianca Mitrică, 2019. "Impacts of Photovoltaic Farms on the Environment in the Romanian Plain," Energies, MDPI, vol. 12(13), pages 1-18, July.
    11. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    12. Mentis, Dimitrios & Hermann, Sebastian & Howells, Mark & Welsch, Manuel & Siyal, Shahid Hussain, 2015. "Assessing the technical wind energy potential in Africa a GIS-based approach," Renewable Energy, Elsevier, vol. 83(C), pages 110-125.
    13. Rebecca R. Hernandez & Madison K. Hoffacker & Christopher B. Field, 2015. "Efficient use of land to meet sustainable energy needs," Nature Climate Change, Nature, vol. 5(4), pages 353-358, April.
    14. Cristea, Ciprian & Cristea, Maria & Birou, Iulian & Tîrnovan, Radu-Adrian, 2020. "Economic assessment of grid-connected residential solar photovoltaic systems introduced under Romania’s new regulation," Renewable Energy, Elsevier, vol. 162(C), pages 13-29.
    15. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    16. Zamfir, Andreea & Colesca, Sofia Elena & Corbos, Razvan-Andrei, 2016. "Public policies to support the development of renewable energy in Romania: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 87-106.
    17. Nicolae Marinescu, 2020. "Changes in Renewable Energy Policy and Their Implications: The Case of Romanian Producers," Energies, MDPI, vol. 13(24), pages 1-16, December.
    18. Paul-Razvan Șerban & Monica Dumitrașcu & Bianca Mitrică & Ines Grigorescu & Irena Mocanu & Gheorghe Kucsicsa & Alexandra Vrînceanu & Cristina Dumitrică, 2020. "The Estimation of Regional Energy Consumption Based on the Energy Consumption Rate at National Level. Case Study: The Romanian Danube Valley," Energies, MDPI, vol. 13(16), pages 1-18, August.
    19. Ştefan Dragoş Cîrstea & Claudia Steluţa Martiş & Andreea Cîrstea & Anca Constantinescu-Dobra & Melinda Timea Fülöp, 2018. "Current Situation and Future Perspectives of the Romanian Renewable Energy," Energies, MDPI, vol. 11(12), pages 1-22, November.
    20. Yushchenko, Alisa & de Bono, Andrea & Chatenoux, Bruno & Kumar Patel, Martin & Ray, Nicolas, 2018. "GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2088-2103.
    21. Năstase, Gabriel & Şerban, Alexandru & Năstase, Alina Florentina & Dragomir, George & Brezeanu, Alin Ionuţ & Iordan, Nicolae Fani, 2017. "Hydropower development in Romania. A review from its beginnings to the present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 297-312.
    22. Brewer, Justin & Ames, Daniel P. & Solan, David & Lee, Randy & Carlisle, Juliet, 2015. "Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability," Renewable Energy, Elsevier, vol. 81(C), pages 825-836.
    23. Sun, Yan-wei & Hof, Angela & Wang, Run & Liu, Jian & Lin, Yan-jie & Yang, De-wei, 2013. "GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province," Energy Policy, Elsevier, vol. 58(C), pages 248-259.
    24. Morales-Lage, Rafael & Bengochea-Morancho, Aurelia & Camarero, Mariam & Martínez-Zarzoso, Inmaculada, 2019. "Club convergence of sectoral CO2 emissions in the European Union," Energy Policy, Elsevier, vol. 135(C).
    25. Năstase, Gabriel & Șerban, Alexandru & Dragomir, George & Brezeanu, Alin Ionuț & Bucur, Irina, 2018. "Photovoltaic development in Romania. Reviewing what has been done," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 523-535.
    26. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    27. Ahmad, Lujean & Khordehgah, Navid & Malinauskaite, Jurgita & Jouhara, Hussam, 2020. "Recent advances and applications of solar photovoltaics and thermal technologies," Energy, Elsevier, vol. 207(C).
    28. Lacal Arantegui, Roberto & Jäger-Waldau, Arnulf, 2018. "Photovoltaics and wind status in the European Union after the Paris Agreement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2460-2471.
    29. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    30. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    31. Ehsan Noorollahi & Dawud Fadai & Mohsen Akbarpour Shirazi & Seyed Hassan Ghodsipour, 2016. "Land Suitability Analysis for Solar Farms Exploitation Using GIS and Fuzzy Analytic Hierarchy Process (FAHP)—A Case Study of Iran," Energies, MDPI, vol. 9(8), pages 1-24, August.
    32. Colesca, Sofia Elena & Ciocoiu, Carmen Nadia, 2013. "An overview of the Romanian renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 149-158.
    33. de Vries, Bert J.M. & van Vuuren, Detlef P. & Hoogwijk, Monique M., 2007. "Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach," Energy Policy, Elsevier, vol. 35(4), pages 2590-2610, April.
    34. Verbruggen, Aviel & Fischedick, Manfred & Moomaw, William & Weir, Tony & Nadaï, Alain & Nilsson, Lars J. & Nyboer, John & Sathaye, Jayant, 2010. "Renewable energy costs, potentials, barriers: Conceptual issues," Energy Policy, Elsevier, vol. 38(2), pages 850-861, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arciuolo, Thomas F. & Faezipour, Miad, 2022. "Yellowstone Caldera Volcanic Power Generation Facility: A new engineering approach for harvesting emission-free green volcanic energy on a national scale," Renewable Energy, Elsevier, vol. 198(C), pages 415-425.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    2. Wang, Peng & Zhang, Shuainan & Pu, Yanru & Cao, Shuchao & Zhang, Yuhu, 2021. "Estimation of photovoltaic power generation potential in 2020 and 2030 using land resource changes: An empirical study from China," Energy, Elsevier, vol. 219(C).
    3. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    4. Diana Enescu & Alessandro Ciocia & Udayanga I. K. Galappaththi & Harsha Wickramasinghe & Francesco Alagna & Angela Amato & Francisco Díaz-González & Filippo Spertino & Valeria Cocina, 2023. "Energy Tariff Policies for Renewable Energy Development: Comparison between Selected European Countries and Sri Lanka," Energies, MDPI, vol. 16(4), pages 1-26, February.
    5. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Gladys Mutinda, 2020. "Solar Energy Potential in the Yangtze River Delta Region—A GIS-Based Assessment," Energies, MDPI, vol. 14(1), pages 1-22, December.
    6. Li, Xiao-Ya & Dong, Xin-Yu & Chen, Sha & Ye, Yan-Mei, 2024. "The promising future of developing large-scale PV solar farms in China: A three-stage framework for site selection," Renewable Energy, Elsevier, vol. 220(C).
    7. Kougias, Ioannis & Taylor, Nigel & Kakoulaki, Georgia & Jäger-Waldau, Arnulf, 2021. "The role of photovoltaics for the European Green Deal and the recovery plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Aly, Ahmed & Jensen, Steen Solvang & Pedersen, Anders Branth, 2017. "Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis," Renewable Energy, Elsevier, vol. 113(C), pages 159-175.
    9. Minaei, Foad & Minaei, Masoud & Kougias, Ioannis & Shafizadeh-Moghadam, Hossein & Hosseini, Seyed Ali, 2021. "Rural electrification in protected areas: A spatial assessment of solar photovoltaic suitability using the fuzzy best worst method," Renewable Energy, Elsevier, vol. 176(C), pages 334-345.
    10. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    11. Majumdar, Debaleena & Pasqualetti, Martin J., 2019. "Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA," Renewable Energy, Elsevier, vol. 134(C), pages 1213-1231.
    12. Katkar, Venktesh V. & Sward, Jeffrey A. & Worsley, Alex & Zhang, K. Max, 2021. "Strategic land use analysis for solar energy development in New York State," Renewable Energy, Elsevier, vol. 173(C), pages 861-875.
    13. Adam Juma Abdallah Gudo & Marye Belete & Ghali Abdullahi Abubakar & Jinsong Deng, 2020. "Spatio-Temporal Analysis of Solar Energy Potential for Domestic and Agricultural Utilization to Diminish Poverty in Jubek State, South Sudan, Africa," Energies, MDPI, vol. 13(6), pages 1-22, March.
    14. Li, Xiaoya & Dong, Xinyu & Ye, Yanmei, 2024. "An interaction model applied to optimize photovoltaic farm location: A case study of China," Applied Energy, Elsevier, vol. 356(C).
    15. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    16. Palmer, Diane & Gottschalg, Ralph & Betts, Tom, 2019. "The future scope of large-scale solar in the UK: Site suitability and target analysis," Renewable Energy, Elsevier, vol. 133(C), pages 1136-1146.
    17. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    18. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    19. Paulo Antônio Xavier Furtado & Antônio Vanderley Herrero Sola, 2020. "Fuzzy Complex Proportional Assessment Applied in Location Selection for Installation of Photovoltaic Plants," Energies, MDPI, vol. 13(23), pages 1-20, November.
    20. Sánchez, David & Bortkiewicz, Anna & Rodríguez, José M. & Martínez, Gonzalo S. & Gavagnin, Giacomo & Sánchez, Tomás, 2016. "A methodology to identify potential markets for small-scale solar thermal power generators," Applied Energy, Elsevier, vol. 169(C), pages 287-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:976-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.