IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024002175.html
   My bibliography  Save this article

Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings

Author

Listed:
  • Wu, Jinxin
  • He, Deqiang
  • Li, Jiayi
  • Miao, Jian
  • Li, Xianwang
  • Li, Hongwei
  • Shan, Sheng

Abstract

Accurate remaining useful life (RUL) prediction of rolling bearings plays a vital role in ensuring the safe operation of mechanical equipment. Graph-based models have become an emerging trend in RUL prediction by converting monitoring samples into graph structures to capture samples’ relationships effectively. However, graph-based models only use pairwise samples to model the relationships between samples and cannot capture the non-pairwise high-order relationships between multiple samples. Besides, graph-based models rely heavily on predefined graphs to aggregate relevant features. The bearing monitoring datasets have no explicit structure, and the predefined graph structures cannot characterize datasets. Aiming at these issues, a temporal multi-resolution hypergraph attention network (T-MHGAT) is proposed. Firstly, the bearings’ monitoring samples are established and fused into a multi-resolution hypergraph (MHG) to characterize the potential structure of bearings monitoring datasets. Then, a hypergraph attention network (HGAT) is designed to mine the high-order relationships between signal samples on hypergraph data. Meanwhile, multiple gated recurrent units (GRUs) are constructed to capture the signal samples’ temporal information. Finally, the linear layer is built after GRUs to output RUL prediction values. Many experiments on two rolling bearing datasets showed the effectiveness of T-MHGAT, which can lay the foundation for predictive equipment maintenance.

Suggested Citation

  • Wu, Jinxin & He, Deqiang & Li, Jiayi & Miao, Jian & Li, Xianwang & Li, Hongwei & Shan, Sheng, 2024. "Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002175
    DOI: 10.1016/j.ress.2024.110143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.