IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024002151.html
   My bibliography  Save this article

Forward and reverse design of adhesive in batteries via dynamics and machine learning algorithms for enhanced mechanical safety

Author

Listed:
  • Zhang, Xiaoxi
  • Pan, Yongjun
  • Zhou, Junxiao
  • Li, Zhixiong
  • Liao, Tianjun
  • Li, Jie

Abstract

The growing popularity of electric vehicles brings opportunities and challenges to the battery industry. Designers need to develop reliable battery packs to ensure the safety of consumers’ property and passengers’ lives. Due to the complex structure of the battery pack, the traditional finite element analysis design consumes a lot of computational resources. The utilization of multibody system dynamics (MSD) and machine learning (ML) methods can assist developers in the efficient design of reliable battery packs. In this work, an MSD model of a battery pack was constructed based on the recursive idea, which can characterize the state information of each cell, such as velocity, acceleration, deformation, etc., during extrusion. By utilizing ML techniques, it is possible to achieve both the forward and reverse design of the adhesive for the battery pack. This enables accurate prediction of battery deformation under various adhesive stiffness and damping coefficients, as well as different battery SOCs. Consequently, the design of the battery adhesive can be guided, resulting in minimal distortion of the battery pack during extrusion and reducing the risk of internal short circuits. This method enables efficient battery pack design and provides ideas for future reliable battery pack designs.

Suggested Citation

  • Zhang, Xiaoxi & Pan, Yongjun & Zhou, Junxiao & Li, Zhixiong & Liao, Tianjun & Li, Jie, 2024. "Forward and reverse design of adhesive in batteries via dynamics and machine learning algorithms for enhanced mechanical safety," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002151
    DOI: 10.1016/j.ress.2024.110141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.