IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024002096.html
   My bibliography  Save this article

A novel local linear embedding algorithm via local mutual representation for bearing fault diagnosis

Author

Listed:
  • Liu, Yuanhong
  • Shi, Baoxin
  • Lu, Shixiang
  • Gao, Zhi-Wei
  • Zhang, Fangfang

Abstract

The locally linear embedding algorithm (LLE) mainly extracts significant features by mining the local neighborhood structure of the data. However, when the data exhibit strong nonlinearity in high-dimensional space, the single neighborhood structure of the LLE algorithm may not accurately capture the local linear relationships between instances, which degrades the performances of the LLE. Therefore, we propose a multi-structure neighborhood locally linear embedding algorithm via local mutual representation (LMR-LLE). Firstly, in each neighborhood, multiple local neighborhood structures of one instance are mined via local mutual representation to enhance the interconnectivity between the instances. Furthermore, the multiple neighborhood structures are fused in the low-dimensional space to construct a global reconstruction model, and the ultimate significant features are acquired by determining the model’s optimal solution. Finally, the extracted features are fed into a classifier for bearing fault diagnosis. Extensive experiments on two rolling bearing datasets illustrate that the LMR-LLE based diagnosis method has better performance accuracy than conventional LLE-based algorithms.

Suggested Citation

  • Liu, Yuanhong & Shi, Baoxin & Lu, Shixiang & Gao, Zhi-Wei & Zhang, Fangfang, 2024. "A novel local linear embedding algorithm via local mutual representation for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002096
    DOI: 10.1016/j.ress.2024.110135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.