IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024002084.html
   My bibliography  Save this article

Reliability improvement of the dredging perception system: A sensor fault-tolerant strategy

Author

Listed:
  • Wang, Bin
  • Zio, Enrico
  • Chen, Xiuhan
  • Zhu, Hanhua
  • Guo, Yunhua
  • Fan, Shidong

Abstract

In the dredging industry, the automation and accuracy of the Dredging Perception System (DPS) are vital for operational efficiency and environmental safety. Current DPS implementations face challenges with sensor fault tolerance, leading to system unreliability and increased false alarm rates that can disrupt dredging operations. We propose a Hybrid Redundancy Sensor Fault Tolerance (HRSFT) strategy that integrates matching physical sensors (PS) with two distinct types of virtual sensors (VS) driven by multi-sensor association and time-series prediction models. The HRSFT employs a voting-cold storage strategy to address the false alarm issues commonly associated with single virtual sensor systems. Through experimental validation, the HRSFT strategy has demonstrated its capability to provide accurate replacement information during both single and multi-sensor failure scenarios, effectively managing abnormal sensor data and enhancing the operational reliability of the DPS. The implementation of the HRSFT strategy significantly improves the accuracy and stability of the DPS, suggesting a substantial advancement in sensor fault tolerance that could be applied to similar systems in various industries, leading to safer and more reliable operations.

Suggested Citation

  • Wang, Bin & Zio, Enrico & Chen, Xiuhan & Zhu, Hanhua & Guo, Yunhua & Fan, Shidong, 2024. "Reliability improvement of the dredging perception system: A sensor fault-tolerant strategy," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002084
    DOI: 10.1016/j.ress.2024.110134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.