IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024002011.html
   My bibliography  Save this article

Knowledge transfer for adaptive maintenance policy optimization in engineering fleets based on meta-reinforcement learning

Author

Listed:
  • Cheng, Jianda
  • Cheng, Minghui
  • Liu, Yan
  • Wu, Jun
  • Li, Wei
  • Frangopol, Dan M.

Abstract

Maintenance policy optimization is crucial for ensuring the efficient functioning of structures and systems and mitigating the risk of deterioration. Reinforcement learning methods, especially when combined with deep neural networks, have seen significant progress in supporting maintenance decisions. However, deep reinforcement learning (DRL) typically necessitates an extensive number of interactions with the system to acquire the optimal policy, resulting in data inefficiency issues that limit the application of DRL in practical engineering fleet problems. Deriving optimal policies with DRL repeatedly for every individual in the engineering fleet can be computationally expensive or even prohibitive. To address the data inefficiency issues, this study proposes a novel maintenance optimization approach that can transfer knowledge from previously learned maintenance cases to the new cases to accelerate the DRL process. Meta-reinforcement learning (Meta-RL) method is proposed to realize the concept of knowledge transfer within a fleet by learning a meta-learned policy. In particular, the meta-learned policy can be quickly adapted to each individual case of the engineering fleet, thereby reducing the required computational burden for maintenance policy optimization. Two examples are used to demonstrate the effectiveness of knowledge transfer.

Suggested Citation

  • Cheng, Jianda & Cheng, Minghui & Liu, Yan & Wu, Jun & Li, Wei & Frangopol, Dan M., 2024. "Knowledge transfer for adaptive maintenance policy optimization in engineering fleets based on meta-reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002011
    DOI: 10.1016/j.ress.2024.110127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024002011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024002011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.