IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024001819.html
   My bibliography  Save this article

SeqOAE: Deep sequence-to-sequence orthogonal auto-encoder for time-series forecasting under variable population sizes

Author

Listed:
  • Chehade, Abdallah
  • Hassanieh, Wael
  • Krivtsov, Vasiliy

Abstract

This paper presents a novel approach to modeling non-linear time-series data in which the population size changes over observation time. This is a common phenomenon when forecasting the time-series of an ongoing study/operation. The goal is to make predictions about the mature time-series at the end of the study/operation given the immature time-series at an early stage of the study/operation. Existing time-series models often ignore this phenomenon by focusing on a fixed population size or a single unit of interest. This paper proposes a sequence-to-sequence deep learning model (SeqOAE) that captures the change in the time-series as a function of observation time. It learns an orthogonal latent feature space for robust long-term temporal forecasting. SeqOAE is non-parametric in time, which allows it to capture non-trivial and non-linear temporal patterns. SeqOAE enables forecasting performance behavior, which is paramount for reliability engineering applications. The model performance is validated on a reliability engineering case study using an extensive automotive warranty dataset with over 12,500 components from millions of vehicles.

Suggested Citation

  • Chehade, Abdallah & Hassanieh, Wael & Krivtsov, Vasiliy, 2024. "SeqOAE: Deep sequence-to-sequence orthogonal auto-encoder for time-series forecasting under variable population sizes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001819
    DOI: 10.1016/j.ress.2024.110107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.