IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024001765.html
   My bibliography  Save this article

An improved analytical solution to outcrossing rate for scalar nonstationary and non-gaussian processes

Author

Listed:
  • Zhang, Bohua
  • Wang, Weigang
  • Lei, Haoran
  • Hu, Xiancun
  • Li, Chun-Qing

Abstract

For time-dependent reliability methods, there is a lack of analytical solutions to outcrossing rates of nonstationary and non-Gaussian processes. This paper aims to propose an analytical method to determine this type of outcrossing rate with improved accuracy and efficiency. The novelty of this proposed method is that it can consider the probabilistic properties of non-Gaussian processes by combining a two-component parallel system model with higher-order moments-based reliability indexes. The main contributions of this method are: (1) compared with PHI2+ method, it is more accurate for the calculation of the outcrossing rate of nonstationary and non-Gaussian processes with nonlinear limit state functions; (2) compared with MPHI2 method, it is analytical and not only applicable for the nonstationary stochastic processes but also insensitive to time increments; and (3) it is not only more accurate than the existing methods for nonstationary and non-Gaussian processes but also more computation efficient than the Monte Carlo simulation method. The proposed method has shown its advantages for practical structures with neither Gaussian processes nor linear limit state functions, which are beneficial for both researchers and asset managers to evaluate the time-dependent reliability of structures accurately and to develop risk-informed maintenance schemes with a view to prolonging their service life.

Suggested Citation

  • Zhang, Bohua & Wang, Weigang & Lei, Haoran & Hu, Xiancun & Li, Chun-Qing, 2024. "An improved analytical solution to outcrossing rate for scalar nonstationary and non-gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001765
    DOI: 10.1016/j.ress.2024.110102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.