IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024001522.html
   My bibliography  Save this article

Activation delay and aborting policy minimizing expected losses in consecutive attempts having cumulative effect on mission success

Author

Listed:
  • Meng, Sa
  • Xing, Liudong
  • Levitin, Gregory

Abstract

This paper proposes a new mission system model where the task may be attempted multiple times by different components that are activated one by one with dissimilar delays. The mission success depends on the cumulative effect of components that have completed the task operation. Each component may abort the task operation according to an individual shock-driven aborting policy defined by the number of experienced shocks and a threshold of operation time during the attempt. Dependent on the status of the cumulative effect, a common abort command (CAC) may also be issued to terminate all the ongoing operations to reduce the expected number of lost components. The optimal activation delay and aborting policy (ADAP) problem is formulated and solved, which determines the individual component aborting parameters, the CAC issuing parameter, and the component activation delays to minimize the expected mission losses (EML). A detailed case study of unmanned aerial vehicles executing a target destruction mission is provided to demonstrate the proposed model and investigate the effects of several key parameters on the mission performance and optimization solutions. The effectiveness of shock-driven and CAC-driven aborts in reducing the EML is also studied and compared using the case study.

Suggested Citation

  • Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Activation delay and aborting policy minimizing expected losses in consecutive attempts having cumulative effect on mission success," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001522
    DOI: 10.1016/j.ress.2024.110078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024001522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.