IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v247y2024ics0951832024000693.html
   My bibliography  Save this article

Adaptive multi-fidelity Monte Carlo for real-time probabilistic storm surge predictions

Author

Listed:
  • Jung, WoongHee
  • Taflanidis, Alexandros A.
  • Kyprioti, Aikaterini P.
  • Zhang, Jize

Abstract

Real-time, probabilistic predictions of the expected storm surge represent an important information source for guiding emergency response decisions during landfalling tropical storms/cyclones. The uncertainty quantification in these predictions is accomplished as follows: an ensemble of sample storm scenarios is generated based on the nominal storm advisory and a probabilistic description of the corresponding forecast errors; subsequently high-fidelity numerical simulations are performed to predict the surge for each of these scenarios; the simulation results are finally leveraged to estimate the statistics of interest. This process is repeated whenever a new storm advisory is issued. The need to establish predictions in real-time, to support emergency planning decisions, creates incentives for high computational efficiency for this probabilistic estimation. This paper investigates an adaptive Multi-Fidelity Monte Carlo (MFMC) framework for achieving such an objective. As a lower-fidelity model within the MFMC setup, a surrogate model is adaptively developed based on high-fidelity numerical simulations from the current or past storm advisories, achieving information sharing across them. MFMC leverages the correlation between the high- and low-fidelity models to establish unbiased predictions with high statistical accuracy, significantly improving abilities to provide timely and informative estimates. To facilitate the development of the low-fidelity model using only a small number of high-fidelity numerical simulations, a combination of physics-based and data-driven dimensionality reduction techniques are introduced for the input and the output, respectively, of the surrogate model. To accommodate the use of high-fidelity simulations from the current advisory in the surrogate model calibration, the MFMC implementation is established using leave-one-out surrogate model predictions. Finally, the challenge of establishing MFMC predictions for a large number of quantities of interest (QoIs), corresponding to the surge at different geographic locations, is discussed. These QoIs may advocate conflicting decisions for the optimal MFMC implementation, and an efficient search for a compromise solution is introduced. The efficiency of the proposed MFMC framework is showcased by considering its application to different historical storms.

Suggested Citation

  • Jung, WoongHee & Taflanidis, Alexandros A. & Kyprioti, Aikaterini P. & Zhang, Jize, 2024. "Adaptive multi-fidelity Monte Carlo for real-time probabilistic storm surge predictions," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024000693
    DOI: 10.1016/j.ress.2024.109994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.109994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:247:y:2024:i:c:s0951832024000693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.