IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v246y2024ics0951832024001571.html
   My bibliography  Save this article

Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration

Author

Listed:
  • Song, Chaolin
  • Xiao, Rucheng
  • Zhang, Chi
  • Zhao, Xinwei
  • Sun, Bo

Abstract

Surrogate model-based reliability analysis aims at building a cheap-to-evaluate mathematical model as a substitute for the original performance function to enhance computational efficiency. Data-driven surrogate models have been popularly studied from a perspective of active learning. On the other hand, Physics-informed Neural Networks, called PINNs, have recently gained much attention as a physics-informed surrogate model to directly solve partial differential equations. Building on the capability of avoiding the simulation of traditional numerical solvers such as the finite element analysis, the PINN-based reliability analysis can achieve highly efficient simulation-free uncertainty quantification. This paper focuses on the development of the PINN-based reliability analysis method and its application in practical engineering applications. Reliability analysis with Importance Sampling-based Adaptive Training Physics-informed Neural Networks (IAT-PINN-RA) is proposed in this work. Compared with the existing PINN-based reliability analysis methods, IAT-PINN-RA introduces a pre-training stage for the establishment of the importance sampling distribution, and therefore achieves better performance when handling rare events. The modeling and reliability analysis of chloride penetration, which can pose serious challenges to the durability of concrete structures, are investigated. A practical example demonstrates the feasibility of using PINNs to model this physical phenomenon and the performance of the proposed method to achieve accurate and efficient reliability analysis results.

Suggested Citation

  • Song, Chaolin & Xiao, Rucheng & Zhang, Chi & Zhao, Xinwei & Sun, Bo, 2024. "Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001571
    DOI: 10.1016/j.ress.2024.110083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.