IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832023008323.html
   My bibliography  Save this article

Developing a probability-based technique to improve the measurement of landslide vulnerability on regional roads

Author

Listed:
  • Liu, Qiang
  • Huang, Delong
  • Zhang, Bin
  • Tang, Aiping
  • Xu, Xiuchen

Abstract

Considering the uncertainty in vulnerability curves, this study employs a probabilistic technique to improve the current landslide vulnerability on roads. The uncertainty in current vulnerability was first elaborated, and slope failure and the damage caused to roads were investigated. To minimize uncertainty, subsequently, the probabilistic landslide intensity was proposed, and hired to calibrate the empirical landslide intensity. Finally, an improved vulnerability curve was developed and compared with the empirical vulnerability, in terms of the fluctuation band and residual value. Results show that the uncertainty of the improved vulnerability is significantly reduced compared with the empirical vulnerability model. In detail, the uncertainty reduction in landslide vulnerability is reflected not only in the decrease of the residual range, from 0.6 to 0.3, but in the narrowing of the fluctuation band. It provides a route for enhancing the accuracy of landslide vulnerability from a probabilistic view.

Suggested Citation

  • Liu, Qiang & Huang, Delong & Zhang, Bin & Tang, Aiping & Xu, Xiuchen, 2024. "Developing a probability-based technique to improve the measurement of landslide vulnerability on regional roads," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023008323
    DOI: 10.1016/j.ress.2023.109918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023008323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goerlandt, Floris & Islam, Samsul, 2021. "A Bayesian Network risk model for estimating coastal maritime transportation delays following an earthquake in British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2022. "Quantitative flood risk evaluation to improve drivers’ route choice decisions during disruptive precipitation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Qiang Liu & Delong Huang & Aiping Tang & Xiaosheng Han, 2021. "Model performance analysis for landslide susceptibility in cold regions using accuracy rate and fluctuation characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1047-1067, August.
    5. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Yin, Dezhi, 2021. "Vulnerability analysis of road network for dangerous goods transportation considering intentional attack: Based on Cellular Automata," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Ghavami, Seyed Morsal, 2019. "Multi-criteria spatial decision support system for identifying strategic roads in disaster situations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 23-36.
    7. Ataollah Shirzadi & Lee Saro & Oh Hyun Joo & Kamran Chapi, 2012. "A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1639-1656, November.
    8. M. Papathoma-Köhle & M. Keiler & R. Totschnig & T. Glade, 2012. "Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2083-2105, December.
    9. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Arango, Erica & Nogal, Maria & Yang, Ming & Sousa, Hélder S. & Stewart, Mark G. & Matos, José C., 2023. "Dynamic thresholds for the resilience assessment of road traffic networks to wildfires," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    11. Pennetti, Cody A. & Fontaine, Michael D. & Jun, Jungwook & Lambert, James H., 2020. "Evaluating capacity of transportation operations with highway travel time reliability," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Liu, Qiang & Tang, Aiping & Huang, Delong & Huang, Ziyuan & Zhang, Bin & Xu, Xiuchen, 2022. "Total probabilistic measure for the potential risk of regional roads exposed to landslides," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Wandelt, Sebastian & Shi, Xing & Sun, Xiaoqian, 2021. "Estimation and improvement of transportation network robustness by exploiting communities," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    14. Zhang, Mingyuan & Yang, Xiangjie & Zhang, Juan & Li, Gang, 2022. "Post-earthquake resilience optimization of a rural “road-bridge†transportation network system," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    16. Jalilpoor, Kamran & Oshnoei, Arman & Mohammadi-Ivatloo, Behnam & Anvari-Moghaddam, Amjad, 2022. "Network hardening and optimal placement of microgrids to improve transmission system resilience: A two-stage linear program," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    17. Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Wu, Yangyang & Hou, Guangyang & Chen, Suren, 2021. "Post-earthquake resilience assessment and long-term restoration prioritization of transportation network," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    19. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Gangolu, Jaswanth & Kumar, Ajay & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Probabilistic demand models and performance-based fragility estimates for concrete protective structures subjected to missile impact," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qiang & Tang, Aiping & Huang, Delong & Huang, Ziyuan & Zhang, Bin & Xu, Xiuchen, 2022. "Total probabilistic measure for the potential risk of regional roads exposed to landslides," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Mendoza-Lugo, Miguel Angel & Morales-Nápoles, Oswaldo, 2024. "Mapping hazardous locations on a road network due to extreme gross vehicle weights," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Boakye, Jessica & Guidotti, Roberto & Gardoni, Paolo & Murphy, Colleen, 2022. "The role of transportation infrastructure on the impact of natural hazards on communities," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Yu, Yun-Chi & Gardoni, Paolo, 2022. "Predicting road blockage due to building damage following earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Zhang, Jianhua & Min, Qinjie & Zhou, Yu & Cheng, Lilai, 2024. "Vulnerability assessments of urban rail transit networks based on extended coupled map lattices with evacuation capability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. den Heijer, Frank & Kok, Matthijs, 2024. "Risk-based portfolio planning of dike reinforcements," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Othman, Abdullah & El-Saoud, Waleed A. & Habeebullah, Turki & Shaaban, Fathy & Abotalib, Abotalib Z., 2023. "Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Wu, Yangyang & Chen, Suren, 2023. "Resilience modeling and pre-hazard mitigation planning of transportation network to support post-earthquake emergency medical response," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Hu, Jie & Wen, Weiping & Zhai, Changhai & Pei, Shunshun, 2024. "Post-earthquake functionality assessment for urban subway systems: Incorporating the combined effects of seismic performance of structural and non-structural systems and functional interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Liu, Enze & Barker, Kash & Chen, Hong, 2022. "A multi-modal evacuation-based response strategy for mitigating disruption in an intercity railway system," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    16. Shang, Qingxue & Guo, Xiaodong & Li, Jichao & Wang, Tao, 2022. "Post-earthquake health care service accessibility assessment framework and its application in a medium-sized city," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    18. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    19. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    20. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023008323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.