IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007457.html
   My bibliography  Save this article

A multi-perspective functionality loss assessment of coupled railway and airline systems under extreme events

Author

Listed:
  • Zhang, Hui
  • Xu, Min
  • Ouyang, Min

Abstract

The coupled national-scale railway and airline systems (CRASs) have drastically improved inter-city connectivity and national economics, but they remain susceptible to various extreme events. These events, including flooding and typhoon, often manifest as localized events because all direct interrupted components lie in a small region relative to the large-scale distribution of CRASs. Instead of the hazard-specific modeling of each localized event, this paper introduces four types of localized disruption models to simulate localized events with various locations, impact coverages, and time spans. A multi-perspective framework is then proposed for travel time-based functionality loss assessment of CRASs under localized events. Taking CRASs in China as an application, results demonstrate that (1) the functionality loss is highly sensitive to the event location, and events in areas with more population, higher GDP, and larger transport systems tend to cause higher functionality loss; (2) the impact coverage of events has a limited influence on functionality loss, as critical areas identified under circle-shaped impact coverage keep consistent with those under administrative district-based coverage; (3) the functionality loss and critical areas vary largely with the time span of localized events. The findings provide valuable insights in devising mitigation strategies for CRASs against various extreme events.

Suggested Citation

  • Zhang, Hui & Xu, Min & Ouyang, Min, 2024. "A multi-perspective functionality loss assessment of coupled railway and airline systems under extreme events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007457
    DOI: 10.1016/j.ress.2023.109831
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sean Wilkinson & Sarah Dunn & Shu Ma, 2012. "The vulnerability of the European air traffic network to spatial hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1027-1036, February.
    2. Hong, Liu & Ouyang, Min & Xu, Min & Hu, Peipei, 2020. "Time-varied accessibility and vulnerability analysis of integrated metro and high-speed rail systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Liu, Enze & Barker, Kash & Chen, Hong, 2022. "A multi-modal evacuation-based response strategy for mitigating disruption in an intercity railway system," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Wang, Zhaojing & Jia, Limin & Ma, Xiaoping & Sun, Xuehui & Tang, Qianxue & Qian, Sina, 2022. "Accessibility-oriented performance evaluation of high-speed railways using a three-layer network model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Tang, Yumeng & Li, Shuang & Zhai, Changhai & Zhao, Jianjun, 2023. "Railway operation recovery method of regional high-speed railway based on optimal resilience after earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    6. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    7. Banerjee, Abhijit & Duflo, Esther & Qian, Nancy, 2020. "On the road: Access to transportation infrastructure and economic growth in China," Journal of Development Economics, Elsevier, vol. 145(C).
    8. Mingyuan Zhang & Juan Zhang & Gang Li & Yuan Zhao, 2020. "A Framework for Identifying the Critical Region in Water Distribution Network for Reinforcement Strategy from Preparation Resilience," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    9. Fan, Dongming & Sun, Bo & Dui, Hongyan & Zhong, Jilong & Wang, Ziyao & Ren, Yi & Wang, Zili, 2022. "A modified connectivity link addition strategy to improve the resilience of multiplex networks against attacks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    10. D. J. Weiss & A. Nelson & H. S. Gibson & W. Temperley & S. Peedell & A. Lieber & M. Hancher & E. Poyart & S. Belchior & N. Fullman & B. Mappin & U. Dalrymple & J. Rozier & T. C. D. Lucas & R. E. Howes, 2018. "A global map of travel time to cities to assess inequalities in accessibility in 2015," Nature, Nature, vol. 553(7688), pages 333-336, January.
    11. Weiping Wang & Saini Yang & H. Eugene Stanley & Jianxi Gao, 2019. "Local floods induce large-scale abrupt failures of road networks," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    12. Szymula, Christopher & Bešinović, Nikola, 2020. "Passenger-centered vulnerability assessment of railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 30-61.
    13. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 119-145.
    14. Wang, Shuliang & Stanley, H. Eugene & Gao, Yachun, 2018. "A methodological framework for vulnerability analysis of interdependent infrastructure systems under deliberate attacks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 21-29.
    15. Yan, Yongze & Hong, Liu & He, Xiaozheng & Ouyang, Min & Peeta, Srinivas & Chen, Xueguang, 2017. "Pre-disaster investment decisions for strengthening the Chinese railway system under earthquakes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 39-59.
    16. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    17. Woodburn, Allan, 2019. "Rail network resilience and operational responsiveness during unplanned disruption: A rail freight case study," Journal of Transport Geography, Elsevier, vol. 77(C), pages 59-69.
    18. Bešinović, Nikola & Ferrari Nassar, Raphael & Szymula, Christopher, 2022. "Resilience assessment of railway networks: Combining infrastructure restoration and transport management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    19. Li, Tao & Rong, Lili, 2022. "Spatiotemporally complementary effect of high-speed rail network on robustness of aviation network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 95-114.
    20. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.
    21. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    22. Dunn, Sarah & Wilkinson, Sean M., 2016. "Increasing the resilience of air traffic networks using a network graph theory approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 39-50.
    23. Faturechi, Reza & Miller-Hooks, Elise, 2014. "Travel time resilience of roadway networks under disaster," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 47-64.
    24. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    25. Min Ouyang & Hui Tian & Zhenghua Wang & Liu Hong & Zijun Mao, 2019. "Critical Infrastructure Vulnerability to Spatially Localized Failures with Applications to Chinese Railway System," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 180-194, January.
    26. Xingjie Hao & Shanshan Cheng & Degang Wu & Tangchun Wu & Xihong Lin & Chaolong Wang, 2020. "Reconstruction of the full transmission dynamics of COVID-19 in Wuhan," Nature, Nature, vol. 584(7821), pages 420-424, August.
    27. Kai Gong & Jia-Jian Wu & Ying Liu & Qing Li & Run-Ran Liu & Ming Tang, 2019. "The Effective Healing Strategy against Localized Attacks on Interdependent Spatially Embedded Networks," Complexity, Hindawi, vol. 2019, pages 1-10, May.
    28. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    29. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    30. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    31. Caroline A Johnson & Allison C Reilly & Roger Flage & Seth D Guikema, 2021. "Characterizing the robustness of power-law networks that experience spatially-correlated failures," Journal of Risk and Reliability, , vol. 235(3), pages 403-415, June.
    32. Lester Blackmon & Ross Chan & Omar Carbral & Geeta Chintapally & Sandip Dhara & Peter Felix & Aditi Jagdish & Srini Konakalla & Jasbir Labana & Jeff McIlvain & Jason Stone & Christopher S. Tang & Jaso, 2021. "Rapid Development of a Decision Support System to Alleviate Food Insecurity at the Los Angeles Regional Food Bank amid the COVID‐19 Pandemic," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3391-3407, October.
    33. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    2. Bellè, Andrea & Zeng, Zhiguo & Duval, Carole & Sango, Marc & Barros, Anne, 2022. "Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    4. Li, Tao & Rong, Lili, 2022. "Spatiotemporally complementary effect of high-speed rail network on robustness of aviation network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 95-114.
    5. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    6. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    7. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    8. Ouyang, Min & Liu, Chuang & Wu, Shengyu, 2020. "Worst-case vulnerability assessment and mitigation model of urban utility tunnels," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    9. Xiaoqian Sun & Sebastian Wandelt, 2021. "Robustness of Air Transportation as Complex Networks:Systematic Review of 15 Years of Research and Outlook into the Future," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    10. Zhou, Yaoming & Kundu, Tanmoy & Qin, Wei & Goh, Mark & Sheu, Jiuh-Biing, 2021. "Vulnerability of the worldwide air transportation network to global catastrophes such as COVID-19," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    11. Wang, Bi & Su, Qin & Chin, Kwai Sang, 2021. "Vulnerability assessment of China–Europe Railway Express multimodal transport network under cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    12. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    13. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    14. Yin, Kai & Wu, Jianjun & Wang, Weiping & Lee, Der-Horng & Wei, Yun, 2023. "An integrated resilience assessment model of urban transportation network: A case study of 40 cities in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    15. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    16. Feng, Xiao & He, Shiwei & Li, Guangye & Chi, Jushang, 2021. "Transfer network of high-speed rail and aviation: Structure and critical components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    17. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    18. Hong, Liu & Zhong, Xin & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2019. "Vulnerability analysis of public transit systems from the perspective of urban residential communities," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 143-156.
    19. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    20. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.