IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v71y2019icp270-279.html
   My bibliography  Save this article

Centralized and decentralized bitcoin markets: Euro vs USD vs GBP

Author

Listed:
  • Matkovskyy, Roman

Abstract

In this study, I compared the euro, U.S. dollar, and British pound sterling (GBP) centralized and decentralized bitcoin cryptocurrency markets in terms of return volatility and interdependency. This comparison showed the decentralized bitcoin market has higher volatility and the centralized markets have higher tail dependence regarding returns. The volatility analysis results are contrary to the established leverage reasons that market drops cause volatility. The results demonstrate a higher left tail dependence is in line with the general pattern in “traditional” financial markets which more extreme dependent in downturns. It was also shown trade volume increases as prices decrease, demonstrating participants’ lack of confidence and consensus in a price-jump period.

Suggested Citation

  • Matkovskyy, Roman, 2019. "Centralized and decentralized bitcoin markets: Euro vs USD vs GBP," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 270-279.
  • Handle: RePEc:eee:quaeco:v:71:y:2019:i:c:p:270-279
    DOI: 10.1016/j.qref.2018.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062976918301194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.qref.2018.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rafael Schmidt & Ulrich Stadtmüller, 2006. "Non‐parametric Estimation of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 307-335, June.
    2. Urquhart, Andrew, 2017. "Price clustering in Bitcoin," Economics Letters, Elsevier, vol. 159(C), pages 145-148.
    3. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    4. Frahm, Gabriel & Junker, Markus & Schmidt, Rafael, 2005. "Estimating the tail-dependence coefficient: Properties and pitfalls," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 80-100, August.
    5. Christian Conrad & Anessa Custovic & Eric Ghysels, 2018. "Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    6. Cherubini, Umberto & Mulinacci, Sabrina & Romagnoli, Silvia, 2011. "A copula-based model of speculative price dynamics in discrete time," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1047-1063, July.
    7. Bouri, Elie & Gupta, Rangan & Lau, Chi Keung Marco & Roubaud, David & Wang, Shixuan, 2018. "Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 297-307.
    8. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    9. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    10. Luther, William J. & Salter, Alexander W., 2017. "Bitcoin and the bailout," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 50-56.
    11. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    12. Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018. "Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
    13. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    14. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    15. Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
    16. Symitsi, Efthymia & Chalvatzis, Konstantinos J., 2018. "Return, volatility and shock spillovers of Bitcoin with energy and technology companies," Economics Letters, Elsevier, vol. 170(C), pages 127-130.
    17. Ji, Qiang & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2018. "Network causality structures among Bitcoin and other financial assets: A directed acyclic graph approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 203-213.
    18. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    19. Pieters, Gina & Vivanco, Sofia, 2017. "Financial regulations and price inconsistencies across Bitcoin markets," Information Economics and Policy, Elsevier, vol. 39(C), pages 1-14.
    20. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    21. Giacomini, Enzo & Härdle, Wolfgang & Spokoiny, Vladimir, 2009. "Inhomogeneous Dependence Modeling with Time-Varying Copulae," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 224-234.
    22. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    23. Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
    24. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    25. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    26. Rainer Böhme & Nicolas Christin & Benjamin Edelman & Tyler Moore, 2015. "Bitcoin: Economics, Technology, and Governance," Journal of Economic Perspectives, American Economic Association, vol. 29(2), pages 213-238, Spring.
    27. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    28. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    29. Corbet, Shaen & Lucey, Brian & Peat, Maurice & Vigne, Samuel, 2018. "Bitcoin Futures—What use are they?," Economics Letters, Elsevier, vol. 172(C), pages 23-27.
    30. Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matkovskyy, Roman & Jalan, Akanksha & Dowling, Michael, 2020. "Effects of economic policy uncertainty shocks on the interdependence between Bitcoin and traditional financial markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 150-155.
    2. Haffar, Adlane & Le Fur, Éric, 2022. "Time-varying dependence of Bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 211-220.
    3. Hu, Yang & Hou, Yang (Greg) & Oxley, Les & Corbet, Shaen, 2021. "Does blockchain patent-development influence Bitcoin risk?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 70(C).
    4. Sebastião, Helder & Godinho, Pedro, 2020. "Bitcoin futures: An effective tool for hedging cryptocurrencies," Finance Research Letters, Elsevier, vol. 33(C).
    5. Samet Gunay & Kerem Kaskaloglu & Shahnawaz Muhammed, 2021. "Bitcoin and Fiat Currency Interactions: Surprising Results from Asian Giants," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    6. Matkovskyy, Roman & Jalan, Akanksha, 2019. "From financial markets to Bitcoin markets: A fresh look at the contagion effect," Finance Research Letters, Elsevier, vol. 31(C), pages 93-97.
    7. Zhengtang Fu & Peiwu Dong & Siyao Li & Yanbing Ju, 2021. "An intelligent cross-border transaction system based on consortium blockchain: A case study in Shenzhen, China," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-22, June.
    8. Będowska-Sójka, Barbara & Kliber, Agata, 2021. "Is there one safe-haven for various turbulences? The evidence from gold, Bitcoin and Ether," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    9. A. Hachicha & F. Hachicha, 2021. "Analysis of the bitcoin stock market indexes using comparative study of two models SV with MCMC algorithm," Review of Quantitative Finance and Accounting, Springer, vol. 56(2), pages 647-673, February.
    10. César Garcia-Gomez & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The evolution of poverty in the EU-28: a further look based on multivariate tail dependence," Working Papers 605, ECINEQ, Society for the Study of Economic Inequality.
    11. Kliber, Agata & Marszałek, Paweł & Musiałkowska, Ida & Świerczyńska, Katarzyna, 2019. "Bitcoin: Safe haven, hedge or diversifier? Perception of bitcoin in the context of a country’s economic situation — A stochastic volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 246-257.
    12. Khaki, Audil & Prasad, Mason & Al-Mohamad, Somar & Bakry, Walid & Vo, Xuan Vinh, 2023. "Re-evaluating portfolio diversification and design using cryptocurrencies: Are decentralized cryptocurrencies enough?," Research in International Business and Finance, Elsevier, vol. 64(C).
    13. Jinsha Zhao, 2022. "Do economic crises cause trading in Bitcoin?," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 14(4), pages 465-490, April.
    14. BRIK, Hatem & El OUAKDI, Jihene & FTITI, Zied, 2022. "Roles of stable versus nonstable cryptocurrencies in Bitcoin market dynamics," Research in International Business and Finance, Elsevier, vol. 62(C).
    15. Uzonwanne, Godfrey, 2021. "Volatility and return spillovers between stock markets and cryptocurrencies," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 30-36.
    16. Cem Cagri Donmez & Doruk Sen & Ahmet Fatih Dereli & M. Bilal Horasan & Cagri Yildiz & Nergis Feride Kaplan Donmez, 2021. "An Investigation of Fiat Characterization and Evolutionary Dynamics of the Cryptocurrency Market," SAGE Open, , vol. 11(1), pages 21582440219, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    3. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    4. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    5. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    6. ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
    7. Symitsi, Efthymia & Chalvatzis, Konstantinos J., 2019. "The economic value of Bitcoin: A portfolio analysis of currencies, gold, oil and stocks," Research in International Business and Finance, Elsevier, vol. 48(C), pages 97-110.
    8. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    9. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    10. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    11. Walther, Thomas & Klein, Tony & Bouri, Elie, 2018. "Exogenous Drivers of Bitcoin and Cryptocurrency Volatility – A Mixed Data Sampling Approach to Forecasting," QBS Working Paper Series 2018/02, Queen's University Belfast, Queen's Business School.
    12. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    13. Haffar, Adlane & Le Fur, Éric, 2022. "Time-varying dependence of Bitcoin," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 211-220.
    14. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    15. Merediz-Solà, Ignasi & Bariviera, Aurelio F., 2019. "A bibliometric analysis of bitcoin scientific production," Research in International Business and Finance, Elsevier, vol. 50(C), pages 294-305.
    16. Parthajit Kayal & G. Balasubramanian, 2021. "Excess Volatility in Bitcoin: Extreme Value Volatility Estimation," IIM Kozhikode Society & Management Review, , vol. 10(2), pages 222-231, July.
    17. Yue, Yao & Li, Xuerong & Zhang, Dingxuan & Wang, Shouyang, 2021. "How cryptocurrency affects economy? A network analysis using bibliometric methods," International Review of Financial Analysis, Elsevier, vol. 77(C).
    18. Toan Luu Duc Huynh & Muhammad Shahbaz & Muhammad Ali Nasir & Subhan Ullah, 2022. "Financial modelling, risk management of energy instruments and the role of cryptocurrencies," Annals of Operations Research, Springer, vol. 313(1), pages 47-75, June.
    19. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    20. Isah, Kazeem O. & Raheem, Ibrahim D., 2019. "The hidden predictive power of cryptocurrencies and QE: Evidence from US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    More about this item

    Keywords

    Bitcoin; Centralized exchange; Decentralized exchange; Volatility; Dependency; ARMA-GARCH copula;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:71:y:2019:i:c:p:270-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.