IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v640y2024ics0378437124001778.html
   My bibliography  Save this article

Optimization of isolated intersection signal timing and trajectory planning under mixed traffic environment: The flexible catalysis of connected and automated vehicles

Author

Listed:
  • Zheng, Shuai
  • Liu, Yugang
  • Fu, Kui
  • Li, Rongrong
  • Zhang, You
  • Yang, Hongtai

Abstract

With the development of connected and automated vehicles (CAVs) enables real-time interaction between intersection signals and vehicle trajectories. The full use of this technological breakthrough will help traffic managers improve the performance of intersections. Most previous research focuses on the 100% CAV environment and the single lateral or longitudinal optimization of CAVs. Based on the flexible characteristics of CAVs, this paper proposes that CAV is regarded as the catalyst of vehicle platoon in mixed traffic environment and considers the uncertainty of CAVs and CHVs’ interaction in the real-world, which can promote the generation of controllable platoon through the “catalytic” mode of cooperative, accelerated, or direct lane-changing, and cooperative or direct overtaking. Simultaneously, a two-stage optimization model of mixed traffic trajectory and signal timing is proposed. Stage I: Based on the predicted vehicle platoon information, a dynamic NEMA signal timing scheme without duplicate structures is generated to minimize vehicle delays. Stage II: Based on the timing scheme, the generation of controllable and stable platoon and vehicle trajectory optimization model are established to minimize vehicle emissions. Dynamic programming with NEMA signal groups as sub-states is designed to solve the proposed model. The performance of the proposed model under different scenarios is investigated through numerical experiments and compared with benchmark models. Results show that the proposed model will outperform the benchmark models regarding average vehicle delay and emission under more realistic traffic demands. The average vehicle delay can be reduced by 54.32% and 7.33%, and the average vehicle emissions can be reduced by 19.1% and 0.8%, respectively. Meanwhile, the sensitivity analysis of CAV market penetration shows that the proposed model can perform satisfactorily at 20% CAV market penetration. Notedly, with increased market penetration, the proposed model will obtain better performance.

Suggested Citation

  • Zheng, Shuai & Liu, Yugang & Fu, Kui & Li, Rongrong & Zhang, You & Yang, Hongtai, 2024. "Optimization of isolated intersection signal timing and trajectory planning under mixed traffic environment: The flexible catalysis of connected and automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
  • Handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s0378437124001778
    DOI: 10.1016/j.physa.2024.129668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124001778
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:640:y:2024:i:c:s0378437124001778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.