IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v635y2024ics0378437123010415.html
   My bibliography  Save this article

Modeling and analysis of mixed traffic flow capacity and stability considering human-driven vehicle drivers' trust attitude towards intelligent connected vehicles

Author

Listed:
  • Chen, Yingda
  • Li, Keping
  • Zhang, Lun
  • Chen, Yili
  • Xiao, Xue

Abstract

During the proliferation process of Intelligent Connected Vehicles (ICVs), mixed traffic consisting of Human-Driven Vehicles (HDVs) and ICVs is inevitable. Notably, varying trust attitudes of HDV drivers towards ICVs lead to diverse driving behaviors when they interact with ICVs. The impact of these differential driving behaviors on the operational characteristics of the mixed traffic flow is currently unclear. This study focuses on examining the capacity and stability of ICV mixed traffic flow in a single-lane, no-overtaking scenario. We investigate the car-following behaviors of HDV drivers with different trust attitudes towards ICVs. From this, we discern the expected distribution probabilities of vehicles exhibiting varying behaviors in the mixed flow. Utilizing these findings, a theoretical model has been developed to analyze the fundamental diagram and stability of mixed traffic flow, considering the trust attitudes of HDV drivers toward ICVs. Through numerical analysis and simulation experiments, the impact of HDV drivers' trust attitudes in ICVs on the capacity and stability of mixed traffic flow was examined. The results show that ICV integration can bolster traffic flow capacity. Further, heightened trust attitude in ICVs among HDV drivers magnifies the positive effect of ICVs on traffic operational efficiency. However, if the ICV penetration rate remains below 70% and the trust level of HDV drivers towards ICVs does not reach a critical threshold, the integration of ICVs could potentially reduce traffic stability. Conversely, once the ICV penetration rate surpasses 70%, a simultaneous increase in ICV penetration rate and the trusting attitude of HDV drivers towards ICVs significantly improves the stability of mixed traffic flow.

Suggested Citation

  • Chen, Yingda & Li, Keping & Zhang, Lun & Chen, Yili & Xiao, Xue, 2024. "Modeling and analysis of mixed traffic flow capacity and stability considering human-driven vehicle drivers' trust attitude towards intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
  • Handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437123010415
    DOI: 10.1016/j.physa.2023.129486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123010415
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Junwei & Qian, Yongsheng & Li, Jiao & Zhang, Yongzhi & Xu, Dejie, 2023. "Congestion and energy consumption of heterogeneous traffic flow mixed with intelligent connected vehicles and platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Pengfei Liu & Wei (David) Fan, 2020. "Exploring the impact of connected and autonomous vehicles on freeway capacity using a revised Intelligent Driver Model," Transportation Planning and Technology, Taylor & Francis Journals, vol. 43(3), pages 279-292, April.
    3. Shi, Xiaowei & Li, Xiaopeng, 2021. "Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 279-292.
    4. Jin, Shuang & Sun, Di-Hua & Zhao, Min & Li, Yang & Chen, Jin, 2020. "Modeling and stability analysis of mixed traffic with conventional and connected automated vehicles from cyber physical perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    5. Ruan, Tiancheng & Zhou, Linjie & Wang, Hao, 2021. "Stability of heterogeneous traffic considering impacts of platoon management with multiple time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Mohammed Al-Turki & Nedal T. Ratrout & Syed Masiur Rahman & Imran Reza, 2021. "Impacts of Autonomous Vehicles on Traffic Flow Characteristics under Mixed Traffic Environment: Future Perspectives," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    7. Yao, Zhihong & Hu, Rong & Wang, Yi & Jiang, Yangsheng & Ran, Bin & Chen, Yanru, 2019. "Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    8. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    9. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    10. Zhu, H.B. & Zhou, Y.J. & Wu, W.J., 2020. "Modeling traffic flow mixed with automated vehicles considering drivers ’ character difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    11. Chen, Yingda & Kong, Dewen & Sun, Lishan & Zhang, Tong & Song, Yongchang, 2022. "Fundamental diagram and stability analysis for heterogeneous traffic flow considering human-driven vehicle driver’s acceptance of cooperative adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Ding, Heng & Zhang, Lang & Chen, Jin & Zheng, Xiaoyan & Pan, Hao & Zhang, Weihua, 2023. "MPC-based dynamic speed control of CAVs in multiple sections upstream of the bottleneck area within a mixed vehicular environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    13. Dewen Kong & Lishan Sun & Yingda Chen, 2022. "Traffic dynamics around freeway merging area with mixed conventional vehicles and connected and autonomous vehicles," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 33(10), pages 1-22, October.
    14. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    15. Zhang, Yan-Tao & Hu, Mao-Bin & Chen, Yu-Zhang & Shi, Cong-Ling, 2023. "Cooperative platoon forming strategy for connected autonomous vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    16. Abdulla I. M. Almadi & Rabia Emhamed Al Mamlook & Yahya Almarhabi & Irfan Ullah & Arshad Jamal & Nishantha Bandara, 2022. "A Fuzzy-Logic Approach Based on Driver Decision-Making Behavior Modeling and Simulation," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    17. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    18. Andrea Papu Carrone & Jeppe Rich & Christian Anker Vandet & Kun An, 2021. "Autonomous vehicles in mixed motorway traffic: capacity utilisation, impact and policy implications," Transportation, Springer, vol. 48(6), pages 2907-2938, December.
    19. Chang, Xin & Li, Haijian & Rong, Jian & Zhao, Xiaohua & Li, An’ran, 2020. "Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    20. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    2. Chen, Yingda & Kong, Dewen & Sun, Lishan & Zhang, Tong & Song, Yongchang, 2022. "Fundamental diagram and stability analysis for heterogeneous traffic flow considering human-driven vehicle driver’s acceptance of cooperative adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    3. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    5. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    6. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    7. Li, Xia & You, Zhijian & Ma, Xinwei & Pang, Xiaomin & Min, Xuefeng & Cui, Hongjun, 2024. "Effect of autonomous vehicles on car-following behavior of human drivers: Analysis based on structural equation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    8. Dong, Jiakuan & Gao, Zhijun & Luo, Dongyu & Wang, Jiangfeng & Chen, Lei, 2024. "Impact of beyond-line-of-sight connectivity on the capacity and stability of mixed traffic flow: An analytical and numerical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    9. Wang, Shu-Tong & Zhu, Wen-Xing & Ma, Xiao-Long, 2023. "Mixed traffic system with multiple vehicle types and autonomous vehicle platoon: Modeling, stability analysis and control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    10. Zhang, Futao & Qian, Yongsheng & Zeng, Junwei & Xu, Dejie & Li, Haijun, 2023. "Stability and safety analysis of mixed traffic flow considering network function degradation and platoon driving on the road with a slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    11. Li, Haijian & Zhang, Junjie & Sun, Xiaoliang & Niu, Jun & Zhao, Xiaohua, 2022. "A survey of vehicle group behaviors simulation under a connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    12. Chen, Jianzhong & Liang, Huan & Li, Jing & Xu, Zhaoxin, 2021. "A novel distributed cooperative approach for mixed platoon consisting of connected and automated vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    13. Liu, Hongjie & Yuan, Tengfei & Zeng, Xiaoqing & Guo, KaiYi & Wang, Yizeng & Mo, Yanghui & Xu, Hongzhe, 2024. "Eco-driving strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    14. Wang, Xinke & Zhang, Jian & Li, Honghai & He, Zhengbing, 2023. "A mixed traffic car-following behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    15. Luo, Ruifa & Gu, Qiufan & Xu, Taorang & Hao, Huijun & Yao, Zhihong, 2022. "Analysis of linear internal stability for mixed traffic flow of connected and automated vehicles considering multiple influencing factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    16. Muhammad Azam & Sitti Asmah Hassan & Othman Che Puan, 2022. "Autonomous Vehicles in Mixed Traffic Conditions—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    17. Li, Chao & Zhao, Xiaomei & Xie, Dongfan, 2022. "Steady-state performance and dynamic performance of heterogeneous platoons under a connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    18. Jiang, Yangsheng & Ren, Tingting & Ma, Yuqin & Wu, Yunxia & Yao, Zhihong, 2023. "Traffic safety evaluation of mixed traffic flow considering the maximum platoon size of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    19. Hou, Lin & Pei, Yulong & He, Qingling, 2023. "A car following model in the context of heterogeneous traffic flow involving multilane following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    20. Du, Yu & Kouvelas, Anastasios & ShangGuan, Wei & Makridis, Michail A., 2022. "Dynamic capacity estimation of mixed traffic flows with application in adaptive traffic signal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:635:y:2024:i:c:s0378437123010415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.