IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v115y2013icp252-269.html
   My bibliography  Save this article

Non-parametric frequency identification and estimation in mean function for almost periodically correlated time series

Author

Listed:
  • Lenart, Łukasz

Abstract

The aim of this article is to present a non-parametric way to identify and estimate the unknown frequencies in the Fourier representation of mean function for almost periodically correlated time series. We state the exact form of asymptotic distribution of normalized estimator of Fourier coefficient for fixed frequency in considered class of time series. Next, we prove the consistency of subsampling procedure applied for the Fourier coefficient. Based on these results we propose a graphical method for determining the presence of periodic or almost periodic structure of mean function. Finally, following Walker (1971) [37] we construct a consistent estimator of frequency and corresponding Fourier coefficient.

Suggested Citation

  • Lenart, Łukasz, 2013. "Non-parametric frequency identification and estimation in mean function for almost periodically correlated time series," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 252-269.
  • Handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:252-269
    DOI: 10.1016/j.jmva.2012.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12002291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parzen, Emanuel & Pagano, Marcello, 1979. "An approach to modeling seasonally stationary time series," Journal of Econometrics, Elsevier, vol. 9(1-2), pages 137-153, January.
    2. Harry L. Hurd & Neil L. Gerr, 1991. "Graphical Methods For Determining The Presence Of Periodic Correlation," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(4), pages 337-350, July.
    3. Hurd, Harry L., 1991. "Correlation theory of almost periodically correlated processes," Journal of Multivariate Analysis, Elsevier, vol. 37(1), pages 24-45, April.
    4. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    5. ŁUkasz Lenart & Jacek Leśkow & Rafał Synowiecki, 2008. "Subsampling in testing autocovariance for periodically correlated time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 995-1018, November.
    6. Osborn, Denise R & Smith, Jeremy P, 1989. "The Performance of Periodic Autoregressive Models in Forecasting Seasonal U. K. Consumption," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 117-127, January.
    7. Athreya, Krishna B. & Pantula, Sastry G., 1986. "A note on strong mixing of ARMA processes," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 187-190, June.
    8. Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
    9. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882.
    10. Andersen, Torben G. & Bollerslev, Tim & Cai, Jun, 2000. "Intraday and interday volatility in the Japanese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 107-130, June.
    11. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    12. Osborn, Denise R., 1991. "The implications of periodically varying coefficients for seasonal time-series processes," Journal of Econometrics, Elsevier, vol. 48(3), pages 373-384, June.
    13. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    14. Politis, Dimitris N. & Romano, Joseph P. & Wolf, Michael, 1999. "On the asymptotic theory of subsampling," DES - Working Papers. Statistics and Econometrics. WS 6334, Universidad Carlos III de Madrid. Departamento de Estadística.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Lenart, 2016. "Generalized Resampling Scheme With Application to Spectral Density Matrix in Almost Periodically Correlated Class of Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 369-404, May.
    2. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    3. Łukasz Lenart & Błażej Mazur, 2016. "On Bayesian Inference for Almost Periodic in Mean Autoregressive Models," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 1, pages 255-272, University of Lodz.
    4. Lukasz Lenart & Blazej Mazur & Mateusz Pipien, 2016. "Statistical Analysis Of Business Cycle Fluctuations In Poland Before And After The Crisis," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(4), pages 769-783, December.
    5. A. Dudek, 2015. "Circular block bootstrap for coefficients of autocovariance function of almost periodically correlated time series," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 313-335, April.
    6. Lukasz Lenart, 2015. "Discrete Spectral Analysis. The Case of Industrial Production in Selected European Countries," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 15, pages 27-47.
    7. Łukasz Lenart & Mateusz Pipień, 2017. "Non-Parametric Test for the Existence of the Common Deterministic Cycle: The Case of the Selected European Countries," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(3), pages 201-241, September.
    8. Łukasz Lenart & Mateusz Pipień, 2015. "Empirical Properties of the Credit and Equity Cycle within Almost Periodically Correlated Stochastic Processes - the Case of Poland, UK and USA," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 7(3), pages 169-186, September.
    9. Błażej Mazur & Mateusz Pipień, 2012. "On the Empirical Importance of Periodicity in the Volatility of Financial Returns - Time Varying GARCH as a Second Order APC(2) Process," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(2), pages 95-116, June.
    10. Dudek, Anna E. & Lenart, Łukasz, 2017. "Subsampling for nonstationary time series with non-zero mean function," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 252-259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    2. Łukasz Lenart & Błażej Mazur, 2016. "On Bayesian Inference for Almost Periodic in Mean Autoregressive Models," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 1, pages 255-272, University of Lodz.
    3. Zou, Nan & Politis, Dimitris N., 2021. "Bootstrap seasonal unit root test under periodic variation," Econometrics and Statistics, Elsevier, vol. 19(C), pages 1-21.
    4. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    5. Łukasz Lenart & Mateusz Pipień, 2015. "Empirical Properties of the Credit and Equity Cycle within Almost Periodically Correlated Stochastic Processes - the Case of Poland, UK and USA," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 7(3), pages 169-186, September.
    6. Łukasz Lenart, 2016. "Generalized Resampling Scheme With Application to Spectral Density Matrix in Almost Periodically Correlated Class of Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 369-404, May.
    7. Politis, Dimitris, 2016. "HEGY test under seasonal heterogeneity," University of California at San Diego, Economics Working Paper Series qt2q4054kf, Department of Economics, UC San Diego.
    8. Yorghos Tripodis & Jeremy Penzer, 2009. "Modelling time series with season-dependent autocorrelation structure," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 559-574.
    9. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    10. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    11. Alexander Vosseler & Enzo Weber, 2018. "Forecasting seasonal time series data: a Bayesian model averaging approach," Computational Statistics, Springer, vol. 33(4), pages 1733-1765, December.
    12. Abdelhakim Aknouche & Abdelouahab Bibi, 2009. "Quasi‐maximum likelihood estimation of periodic GARCH and periodic ARMA‐GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 19-46, January.
    13. Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
    14. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    15. Denise R. Osborn & Christos S. Savva & Len Gill, 2008. "Periodic Dynamic Conditional Correlations between Stock Markets in Europe and the US," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 307-325, Summer.
    16. Richard M. Todd, 1989. "Periodic linear-quadratic methods for modeling seasonality," Staff Report 127, Federal Reserve Bank of Minneapolis.
    17. Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 922-961.
    18. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    19. Tomas Barrio Castro & Mariam Camarero & Cecilio Tamarit, 2015. "An analysis of the trade balance for OECD countries using periodic integration and cointegration," Empirical Economics, Springer, vol. 49(2), pages 389-402, September.
    20. Eugen Ursu & Pierre Duchesne, 2009. "Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 183-212, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:252-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.