IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v169y2017icp35-61.html
   My bibliography  Save this article

Stationary Markov perfect equilibria in discounted stochastic games

Author

Listed:
  • He, Wei
  • Sun, Yeneng

Abstract

The existence of stationary Markov perfect equilibria in stochastic games is shown under a general condition called “(decomposable) coarser transition kernels”. This result covers various earlier existence results on correlated equilibria, noisy stochastic games, stochastic games with finite actions and state-independent transitions, and stochastic games with mixtures of constant transition kernels as special cases. A remarkably simple proof is provided via establishing a new connection between stochastic games and conditional expectations of correspondences. New applications of stochastic games are presented as illustrative examples, including stochastic games with endogenous shocks and a stochastic dynamic oligopoly model.

Suggested Citation

  • He, Wei & Sun, Yeneng, 2017. "Stationary Markov perfect equilibria in discounted stochastic games," Journal of Economic Theory, Elsevier, vol. 169(C), pages 35-61.
  • Handle: RePEc:eee:jetheo:v:169:y:2017:i:c:p:35-61
    DOI: 10.1016/j.jet.2017.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S002205311730008X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jet.2017.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mertens, J.-F. & Parthasarathy, T., 1987. "Equilibria for discounted stochastic games," LIDAM Discussion Papers CORE 1987050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Duffie, Darrell, et al, 1994. "Stationary Markov Equilibria," Econometrica, Econometric Society, vol. 62(4), pages 745-781, July.
    3. Parthasarathy, T & Sinha, S, 1989. "Existence of Stationary Equilibrium Strategies in Non-zero Sum Discounted Stochastic Games with Uncountable State Space and State-Independent Transitions," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 189-194.
    4. Yehuda Levy, 2013. "Discounted Stochastic Games With No Stationary Nash Equilibrium: Two Examples," Econometrica, Econometric Society, vol. 81(5), pages 1973-2007, September.
    5. Rabah Amir, 2002. "Complementarity and Diagonal Dominance in Discounted Stochastic Games," Annals of Operations Research, Springer, vol. 114(1), pages 39-56, August.
    6. John Duggan, 2012. "Noisy Stochastic Games," Econometrica, Econometric Society, vol. 80(5), pages 2017-2045, September.
    7. Yehuda John Levy & Andrew McLennan, 2015. "Corrigendum to “Discounted Stochastic Games With No Stationary Nash Equilibrium: Two Examples”," Econometrica, Econometric Society, vol. 83(3), pages 1237-1252, May.
    8. Xavier Vives, 2009. "Strategic complementarity in multi-stage games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 151-171, July.
    9. Horst, Ulrich, 2005. "Stationary equilibria in discounted stochastic games with weakly interacting players," Games and Economic Behavior, Elsevier, vol. 51(1), pages 83-108, April.
    10. Jaśkiewicz, Anna & Nowak, Andrzej S., 2014. "Stationary Markov perfect equilibria in risk sensitive stochastic overlapping generations models," Journal of Economic Theory, Elsevier, vol. 151(C), pages 411-447.
    11. Amir, Rabah, 1996. "Continuous Stochastic Games of Capital Accumulation with Convex Transitions," Games and Economic Behavior, Elsevier, vol. 15(2), pages 111-131, August.
    12. Richard Ericson & Ariel Pakes, 1995. "Markov-Perfect Industry Dynamics: A Framework for Empirical Work," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(1), pages 53-82.
    13. Maskin, Eric & Tirole, Jean, 1988. "A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand Curves, and Edgeworth Cycles," Econometrica, Econometric Society, vol. 56(3), pages 571-599, May.
    14. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2014. "A constructive study of Markov equilibria in stochastic games with strategic complementarities," Journal of Economic Theory, Elsevier, vol. 150(C), pages 815-840.
    15. AMIR, Rabah, 2001. "Stochastic games in economics and related fields: an overview," LIDAM Discussion Papers CORE 2001060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Curtat, Laurent O., 1996. "Markov Equilibria of Stochastic Games with Complementarities," Games and Economic Behavior, Elsevier, vol. 17(2), pages 177-199, December.
    17. Maskin, Eric & Tirole, Jean, 1988. "A Theory of Dynamic Oligopoly, I: Overview and Quantity Competition with Large Fixed Costs," Econometrica, Econometric Society, vol. 56(3), pages 549-569, May.
    18. John Duggan, 2012. "Noisy Stochastic Games," RCER Working Papers 570, University of Rochester - Center for Economic Research (RCER).
    19. Hopenhayn, Hugo A, 1992. "Entry, Exit, and Firm Dynamics in Long Run Equilibrium," Econometrica, Econometric Society, vol. 60(5), pages 1127-1150, September.
    20. Andrzej Nowak, 2007. "On stochastic games in economics," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 513-530, December.
    21. A. S. Nowak & T. E. S. Raghavan, 1992. "Existence of Stationary Correlated Equilibria with Symmetric Information for Discounted Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 519-526, August.
    22. Andrzej Nowak, 2006. "On perfect equilibria in stochastic models of growth with intergenerational altruism," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(1), pages 73-83, May.
    23. Andrzej Nowak, 2003. "On a new class of nonzero-sum discounted stochastic games having stationary Nash equilibrium points," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(1), pages 121-132, December.
    24. Maskin, Eric & Tirole, Jean, 2001. "Markov Perfect Equilibrium: I. Observable Actions," Journal of Economic Theory, Elsevier, vol. 100(2), pages 191-219, October.
    25. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hülya Eraslan & Kirill S. Evdokimov & Jan Zápal, 2022. "Dynamic Legislative Bargaining," Springer Books, in: Emin Karagözoğlu & Kyle B. Hyndman (ed.), Bargaining, chapter 0, pages 151-175, Springer.
    2. David González-Sánchez & Fernando Luque-Vásquez & J. Adolfo Minjárez-Sosa, 2019. "Zero-Sum Markov Games with Random State-Actions-Dependent Discount Factors: Existence of Optimal Strategies," Dynamic Games and Applications, Springer, vol. 9(1), pages 103-121, March.
    3. Light, Bar & Weintraub, Gabriel, 2018. "Mean Field Equilibrium: Uniqueness, Existence, and Comparative Statics," Research Papers 3731, Stanford University, Graduate School of Business.
    4. Anna Jaśkiewicz & Andrzej S. Nowak, 2021. "Markov decision processes with quasi-hyperbolic discounting," Finance and Stochastics, Springer, vol. 25(2), pages 189-229, April.
    5. Fu, Jing & Page, Frank & Zigrand, Jean-Pierre, 2022. "Layered networks, equilibrium dynamics, and stable coalitions," LSE Research Online Documents on Economics 118874, London School of Economics and Political Science, LSE Library.
    6. Damián Pierri, 2023. "Simulations in Models with Heterogeneous Agents, Incomplete Markets and Aggregate Uncertainty," Working Papers 259, Red Nacional de Investigadores en Economía (RedNIE).
    7. Wei He & Yeneng Sun, 2018. "Conditional expectation of correspondences and economic applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 265-299, August.
    8. Subir K. Chakrabarti, 2021. "Stationary equilibrium in stochastic dynamic models: Semi-Markov strategies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 9(2), pages 177-194, October.
    9. Jenkins, Mark & Liu, Paul & Matzkin, Rosa L. & McFadden, Daniel L., 2021. "The browser war — Analysis of Markov Perfect Equilibrium in markets with dynamic demand effects," Journal of Econometrics, Elsevier, vol. 222(1), pages 244-260.
    10. He, Wei & Sun, Yeneng, 2020. "Dynamic games with (almost) perfect information," Theoretical Economics, Econometric Society, vol. 15(2), May.
    11. Wei He, 2022. "Discontinuous stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 827-858, June.
    12. Cao, Dan, 2020. "Recursive equilibrium in Krusell and Smith (1998)," Journal of Economic Theory, Elsevier, vol. 186(C).
    13. Runjie Geng, 2018. "Recursive equilibria in dynamic economies withbounded rationality," 2018 Meeting Papers 137, Society for Economic Dynamics.
    14. Jing Fu & Frank Page & Jean-Pierre Zigrand, 2023. "Correction to: Layered Networks, Equilibrium Dynamics, and Stable Coalitions," Dynamic Games and Applications, Springer, vol. 13(2), pages 669-704, June.
    15. Dang, Chuangyin & Herings, P. Jean-Jacques & Li, Peixuan, 2020. "An Interior-Point Path-Following Method to Compute Stationary Equilibria in Stochastic Games," Research Memorandum 001, Maastricht University, Graduate School of Business and Economics (GSBE).
    16. Jing Fu & Frank Page & Jean-Pierre Zigrand, 2023. "Layered Networks, Equilibrium Dynamics, and Stable Coalitions," Dynamic Games and Applications, Springer, vol. 13(2), pages 636-668, June.
    17. Fu, Jing & Page, Frank, 2022. "Discounted stochastic games, the 3M property and stationary Markov perfect equilibria," LSE Research Online Documents on Economics 118865, London School of Economics and Political Science, LSE Library.
    18. Jie Ning, 2021. "Reducible Markov Decision Processes and Stochastic Games," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2726-2751, August.
    19. Chuangyin Dang & P. Jean-Jacques Herings & Peixuan Li, 2022. "An Interior-Point Differentiable Path-Following Method to Compute Stationary Equilibria in Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1403-1418, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei He, 2022. "Discontinuous stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 827-858, June.
    2. Jaśkiewicz, Anna & Nowak, Andrzej S., 2014. "Stationary Markov perfect equilibria in risk sensitive stochastic overlapping generations models," Journal of Economic Theory, Elsevier, vol. 151(C), pages 411-447.
    3. Anna Jaśkiewicz & Andrzej S. Nowak, 2016. "Stationary Almost Markov Perfect Equilibria in Discounted Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 430-441, May.
    4. Duggan, John & Kalandrakis, Tasos, 2012. "Dynamic legislative policy making," Journal of Economic Theory, Elsevier, vol. 147(5), pages 1653-1688.
    5. Page, Frank, 2016. "Stationary Markov equilibria for approximable discounted stochastic games," LSE Research Online Documents on Economics 67808, London School of Economics and Political Science, LSE Library.
    6. John Duggan, 2012. "Noisy Stochastic Games," RCER Working Papers 570, University of Rochester - Center for Economic Research (RCER).
    7. Łukasz Balbus & Kevin Reffett & Łukasz Woźny, 2013. "Markov Stationary Equilibria in Stochastic Supermodular Games with Imperfect Private and Public Information," Dynamic Games and Applications, Springer, vol. 3(2), pages 187-206, June.
    8. Escobar, Juan F., 2013. "Equilibrium analysis of dynamic models of imperfect competition," International Journal of Industrial Organization, Elsevier, vol. 31(1), pages 92-101.
    9. John Duggan, 2011. "Noisy Stochastic Games," RCER Working Papers 562, University of Rochester - Center for Economic Research (RCER).
    10. Barelli, Paulo & Duggan, John, 2014. "A note on semi-Markov perfect equilibria in discounted stochastic games," Journal of Economic Theory, Elsevier, vol. 151(C), pages 596-604.
    11. Ulrich Doraszelski & Mark Satterthwaite, 2010. "Computable Markov‐perfect industry dynamics," RAND Journal of Economics, RAND Corporation, vol. 41(2), pages 215-243, June.
    12. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2014. "A constructive study of Markov equilibria in stochastic games with strategic complementarities," Journal of Economic Theory, Elsevier, vol. 150(C), pages 815-840.
    13. Balbus, Łukasz & Reffett, Kevin & Woźny, Łukasz, 2013. "A constructive geometrical approach to the uniqueness of Markov stationary equilibrium in stochastic games of intergenerational altruism," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1019-1039.
    14. Jenkins, Mark & Liu, Paul & Matzkin, Rosa L. & McFadden, Daniel L., 2021. "The browser war — Analysis of Markov Perfect Equilibrium in markets with dynamic demand effects," Journal of Econometrics, Elsevier, vol. 222(1), pages 244-260.
    15. Page, Frank, 2016. "On K-Class discounted stochastic games," LSE Research Online Documents on Economics 67809, London School of Economics and Political Science, LSE Library.
    16. Qingda Wei & Xian Chen, 2022. "Discounted stochastic games for continuous-time jump processes with an uncountable state space," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 187-218, April.
    17. Page, Frank, 2015. "Stationary Markov equilibria for K-class discounted stochastic games," LSE Research Online Documents on Economics 65103, London School of Economics and Political Science, LSE Library.
    18. Yehuda (John) Levy, 2012. "A Discounted Stochastic Game with No Stationary Equilibria: The Case of Absolutely Continuous Transitions," Discussion Paper Series dp612, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    19. Kimmo Berg, 2016. "Elementary Subpaths in Discounted Stochastic Games," Dynamic Games and Applications, Springer, vol. 6(3), pages 304-323, September.
    20. A. S. Nowak, 2010. "On a Noncooperative Stochastic Game Played by Internally Cooperating Generations," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 88-106, January.

    More about this item

    Keywords

    Stochastic game; Stationary Markov perfect equilibrium; (Decomposable) coarser transition kernel; Endogenous shocks; Dynamic oligopoly;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:169:y:2017:i:c:p:35-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.