IDEAS home Printed from https://ideas.repec.org/a/eee/foreco/v32y2018icp94-105.html
   My bibliography  Save this article

Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners

Author

Listed:
  • Pohjola, Johanna
  • Laturi, Jani
  • Lintunen, Jussi
  • Uusivuori, Jussi

Abstract

Sequestering carbon in forests and wood products is an inexpensive way to reduce the atmospheric carbon concentration. However, its full potential is not utilized in present climate policies. Optimizing sequestration, while continuing to harvest wood for materials and energy, could reduce the economic burden of mitigation efforts. Optimal sequestration can be incentivized by subsidizing carbon storage according to its social value. We analyze the dynamic market-level impacts of implementing a forest carbon policy by using the Finnish Forest and Energy Policy model (FinFEP). We find that sizeable and immediate increases in carbon sinks can be obtained, even with low carbon prices. High carbon payments strongly increase the carbon sink in the short run, but this impact diminishes over time. Low payments have a milder but longer-lasting impact. Forest owners’ valuations of forest amenities also affect the magnitude and dynamics of harvest and carbon sequestration results. Thus, a realistic description of forest owner behavior is needed to assess the impacts of forest carbon policies. Moreover, we show that a market-level model is necessary for assessing the regional carbon sequestration impacts and costs. Relying on stand-level models with fixed timber prices may yield overly optimistic results.

Suggested Citation

  • Pohjola, Johanna & Laturi, Jani & Lintunen, Jussi & Uusivuori, Jussi, 2018. "Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners," Journal of Forest Economics, Elsevier, vol. 32(C), pages 94-105.
  • Handle: RePEc:eee:foreco:v:32:y:2018:i:c:p:94-105
    DOI: 10.1016/j.jfe.2018.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1104689917301265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfe.2018.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    2. Lintunen, Jussi & Uusivuori, Jussi, 2016. "On the economics of forests and climate change: Deriving optimal policies," Journal of Forest Economics, Elsevier, vol. 24(C), pages 130-156.
    3. Jani Laturi & Jussi Lintunen & Jussi Uusivuori, 2016. "Modeling The Economics Of The Reference Levels For Forest Management Emissions In The Eu," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 1-22, August.
    4. Pohjola, J. & Valsta, L., 2007. "Carbon credits and management of Scots pine and Norway spruce stands in Finland," Forest Policy and Economics, Elsevier, vol. 9(7), pages 789-798, April.
    5. Kangas, Hanna-Liisa & Lintunen, Jussi & Uusivuori, Jussi, 2009. "The cofiring problem of a power plant under policy regulations," Energy Policy, Elsevier, vol. 37(5), pages 1898-1904, May.
    6. Lecocq, Franck & Caurla, Sylvain & Delacote, Philippe & Barkaoui, Ahmed & Sauquet, Alexandre, 2011. "Paying for forest carbon or stimulating fuelwood demand? Insights from the French Forest Sector Model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 157-168, April.
    7. Lintunen, Jussi & Kangas, Hanna-Liisa, 2010. "The case of co-firing: The market level effects of subsidizing biomass co-combustion," Energy Economics, Elsevier, vol. 32(3), pages 694-701, May.
    8. Lobianco, Antonello & Caurla, Sylvain & Delacote, Philippe & Barkaoui, Ahmed, 2016. "Carbon mitigation potential of the French forest sector under threat of combined physical and market impacts due to climate change," Journal of Forest Economics, Elsevier, vol. 23(C), pages 4-26.
    9. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    10. Kangas, Hanna-Liisa & Lintunen, Jussi & Pohjola, Johanna & Hetemäki, Lauri & Uusivuori, Jussi, 2011. "Investments into forest biorefineries under different price and policy structures," Energy Economics, Elsevier, vol. 33(6), pages 1165-1176.
    11. Vass, Miriam Münnich & Elofsson, Katarina, 2016. "Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050?," Journal of Forest Economics, Elsevier, vol. 24(C), pages 82-105.
    12. Lintunen, Jussi & Laturi, Jani & Uusivuori, Jussi, 2016. "How should a forest carbon rent policy be implemented?," Forest Policy and Economics, Elsevier, vol. 69(C), pages 31-39.
    13. Mäkelä, Matti & Lintunen, Jussi & Kangas, Hanna-Liisa & Uusivuori, Jussi, 2011. "Pellet promotion in the Finnish sawmilling industry: The cost-effectiveness of different policy instruments," Journal of Forest Economics, Elsevier, vol. 17(2), pages 185-196, April.
    14. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    15. Ahmed Barkaoui & Sylvain Caurla & Philippe Delacote & Antonello Lobianco, 2013. "The French Forest Sector Model 2.0 (FFSM++)," Post-Print hal-01627988, HAL.
    16. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    17. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    2. Bryngemark, Elina, 2019. "Second generation biofuels and the competition for forest raw materials: A partial equilibrium analysis of Sweden," Forest Policy and Economics, Elsevier, vol. 109(C).
    3. Miguel Riviere & Sylvain Caurla, 2020. "Representations of the Forest Sector in Economic Models [Les représentations du secteur forestier dans les modèles économiques]," Post-Print hal-03088084, HAL.
    4. Rørstad, Per Kristian, 2022. "Payment for CO2 sequestration affects the Faustmann rotation period in Norway more than albedo payment does," Ecological Economics, Elsevier, vol. 199(C).
    5. Daigneault, Adam & Strong, Aaron L. & Meyer, Spencer R., 2021. "Benefits, costs, and feasibility of scaling up land conservation for maintaining ecosystem services in the Sebago Lake watershed, Maine, USA," Ecosystem Services, Elsevier, vol. 48(C).
    6. Tianchu Feng & Meijuan Liu & Chaozhu Li, 2022. "How Does Vertical Fiscal Imbalance Affect CO 2 Emissions? The Role of Capital Mismatch," Sustainability, MDPI, vol. 14(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018. "Heat or power: How to increase the use of energy wood at the lowest cost?," Energy Economics, Elsevier, vol. 75(C), pages 85-103.
    2. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    3. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    4. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    5. Miguel Riviere & Sylvain Caurla, 2020. "Representations of the Forest Sector in Economic Models [Les représentations du secteur forestier dans les modèles économiques]," Post-Print hal-03088084, HAL.
    6. Caparros, Alejandro & Cerda, Emilio & Ovando, P. & Campos, Pablo, 2007. "Carbon Sequestration with Reforestations and Biodiversity-Scenic Values," Climate Change Modelling and Policy Working Papers 9323, Fondazione Eni Enrico Mattei (FEEM).
    7. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    8. Guthrie, Graeme & Kumareswaran, Dinesh, 2003. "Carbon Subsidies and Optimal Forest Management," Working Paper Series 3879, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    9. Indrajaya, Yonky & van der Werf, Edwin & Weikard, Hans-Peter & Mohren, Frits & van Ierland, Ekko C., 2016. "The potential of REDD+ for carbon sequestration in tropical forests: Supply curves for carbon storage for Kalimantan, Indonesia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 1-10.
    10. Roy Chowdhury, Pranab K. & Brown, Daniel G., 2023. "Modeling the effects of carbon payments and forest owner cooperatives on carbon storage and revenue in Pacific Northwest forestlands," Land Use Policy, Elsevier, vol. 131(C).
    11. Jussi Lintunen & Aapo Rautiainen & Jussi Uusivuori, 2022. "Which Is more Important, Carbon or Albedo? Optimizing Harvest Rotations for Timber and Climate Benefits in a Changing Climate," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 134-160, January.
    12. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    13. Bryngemark, Elina, 2019. "Second generation biofuels and the competition for forest raw materials: A partial equilibrium analysis of Sweden," Forest Policy and Economics, Elsevier, vol. 109(C).
    14. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    15. Eriksson, Mathilda & Brännlund, Runar & Lundgren, Tommy, 2018. "Pricing forest carbon: Implications of asymmetry in climate policy," Journal of Forest Economics, Elsevier, vol. 32(C), pages 84-93.
    16. Juutinen, Artti & Ahtikoski, Anssi & Lehtonen, Mika & Mäkipää, Raisa & Ollikainen, Markku, 2018. "The impact of a short-term carbon payment scheme on forest management," Forest Policy and Economics, Elsevier, vol. 90(C), pages 115-127.
    17. Ekholm, Tommi, 2020. "Optimal forest rotation under carbon pricing and forest damage risk," Forest Policy and Economics, Elsevier, vol. 115(C).
    18. Kangas, Hanna-Liisa & Lintunen, Jussi & Pohjola, Johanna & Hetemäki, Lauri & Uusivuori, Jussi, 2011. "Investments into forest biorefineries under different price and policy structures," Energy Economics, Elsevier, vol. 33(6), pages 1165-1176.
    19. Lintunen, Jussi & Rautiainen, Aapo, 2021. "On physical and social-cost-based CO2 equivalents for transient albedo-induced forcing," Ecological Economics, Elsevier, vol. 190(C).
    20. Manley, Bruce, 2023. "Impact of carbon price on the relative profitability of production forestry and permanent forestry for New Zealand plantations," Forest Policy and Economics, Elsevier, vol. 156(C).

    More about this item

    Keywords

    Climate change; Forest carbon policy; Carbon rents; Carbon sequestration; Timber markets; Forest owners’ preferences; Bioenergy;
    All these keywords.

    JEL classification:

    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:32:y:2018:i:c:p:94-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.