IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i9p5640-5648.html
   My bibliography  Save this article

Metal requirements of low-carbon power generation

Author

Listed:
  • Kleijn, René
  • van der Voet, Ester
  • Kramer, Gert Jan
  • van Oers, Lauran
  • van der Giesen, Coen

Abstract

Today, almost 70% of the electricity is produced from fossil fuels and power generation accounts for over 40% of global CO2 emissions. If the targets to reduce climate change are to be met, substantial reductions in emissions are necessary. Compared to other sectors emission reductions in the power sector are relatively easy to achieve because it consists mainly of point-sources. Carbon Capture and Storage (CCS) and the use of low-carbon alternative energy sources are the two categories of options to reduce CO2 emissions. However, for both options additional infrastructure and equipment is needed. This article compares CO2 emissions and metal requirements of different low-carbon power generation technologies on the basis of Life Cycle Assessment. We analyze the most critical output (CO2) and the most critical input (metals) in the same methodological framework. CO2 emissions and metal requirements are compared with annual global emissions and annual production for different metals. It was found that all technologies are very effective in reducing CO2 emissions. However, CCS and especially non-fossil technologies are substantially more metal intensive than existing power generation. A transition to a low-carbon based power generation would require a substantial upscaling of current mining of several metals.

Suggested Citation

  • Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:9:p:5640-5648
    DOI: 10.1016/j.energy.2011.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211004518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guang, Yang & Wenjie, Huang, 2010. "The status quo of China's nuclear power and the uranium gap solution," Energy Policy, Elsevier, vol. 38(2), pages 966-975, February.
    2. Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
    3. Humphreys, David, 2010. "The great metals boom: A retrospective," Resources Policy, Elsevier, vol. 35(1), pages 1-13, March.
    4. Gert Jan Kramer & Martin Haigh, 2009. "No quick switch to low-carbon energy," Nature, Nature, vol. 462(7273), pages 568-569, December.
    5. Ayres, Robert U., 2007. "On the practical limits to substitution," Ecological Economics, Elsevier, vol. 61(1), pages 115-128, February.
    6. Robert M. Solow, 1974. "The Economics of Resources or the Resources of Economics," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 12, pages 257-276, Palgrave Macmillan.
    7. Kleijn, Rene & van der Voet, Ester, 2010. "Resource constraints in a hydrogen economy based on renewable energy sources: An exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2784-2795, December.
    8. Quirin Schiermeier & Jeff Tollefson & Tony Scully & Alexandra Witze & Oliver Morton, 2008. "Energy alternatives: Electricity without carbon," Nature, Nature, vol. 454(7206), pages 816-823, August.
    9. Mudd, Gavin M., 2010. "The Environmental sustainability of mining in Australia: key mega-trends and looming constraints," Resources Policy, Elsevier, vol. 35(2), pages 98-115, June.
    10. Odeh, Naser A. & Cockerill, Timothy T., 2008. "Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage," Energy Policy, Elsevier, vol. 36(1), pages 367-380, January.
    11. Lior, Noam, 2008. "Energy resources and use: The present situation and possible paths to the future," Energy, Elsevier, vol. 33(6), pages 842-857.
    12. Radetzki, Marian & Eggert, Roderick G. & Lagos, Gustavo & Lima, Marcos & Tilton, John E., 2008. "The boom in mineral markets: How long might it last?," Resources Policy, Elsevier, vol. 33(3), pages 125-128, September.
    13. Roger Fouquet, 2008. "Heat, Power and Light," Books, Edward Elgar Publishing, number 4061, December.
    14. Richard L. Gordon, 2009. "Hicks, Hayek, Hotelling, Hubbert, and Hysteria or Energy, Exhaustion, Environmentalism, and Etatism in the 21st Century," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-16.
    15. Radetzki,Marian, 2008. "A Handbook of Primary Commodities in the Global Economy," Cambridge Books, Cambridge University Press, number 9780521880206, Junio.
    16. Raugei, Marco & Frankl, Paolo, 2009. "Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks," Energy, Elsevier, vol. 34(3), pages 392-399.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    2. Victor Court & Florian Fizaine, 2014. "Energy transition towards renewables and metal depletion: an approach through the EROI concept," Post-Print hal-01411803, HAL.
    3. Bürgi Bonanomi, Elisabeth & Elsig, Manfred & Espa, Ilaria, 2015. "The Commodity Sector and Related Governance Challenges from a Sustainable Development Perspective: The Example of Switzerland Current Research Gaps," Papers 865, World Trade Institute.
    4. Florian Fizaine, 2021. "La croissance verte est-elle durable et compatible avec l’économie circulaire ? Une approche par l’identité IPAT," Post-Print hal-03884377, HAL.
    5. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    6. Mardi Dungey & Renee Fry-McKibbin & Verity Linehan, 2014. "Chinese resource demand and the natural resource supplier," Applied Economics, Taylor & Francis Journals, vol. 46(2), pages 167-178, January.
    7. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    8. Sverdrup, Harald U. & Ragnarsdottir, Kristin Vala & Koca, Deniz, 2015. "Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 139-154.
    9. Smith, James L., 2012. "On the portents of peak oil (and other indicators of resource scarcity)," Energy Policy, Elsevier, vol. 44(C), pages 68-78.
    10. Shang, Delei & Geissler, Bernhard & Mew, Michael & Satalkina, Liliya & Zenk, Lukas & Tulsidas, Harikrishnan & Barker, Lee & El-Yahyaoui, Adil & Hussein, Ahmed & Taha, Mohamed & Zheng, Yanhua & Wang, M, 2021. "Unconventional uranium in China's phosphate rock: Review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Stuermer, Martin, 2017. "Industrialization and the demand for mineral commodities," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 16-27.
    12. Pickard, William F., 2013. "Transporting the terajoules: Efficient energy distribution in a post-carbon world," Energy Policy, Elsevier, vol. 62(C), pages 51-61.
    13. P. Hammond, Geoffrey & O' Grady, Áine, 2017. "The life cycle greenhouse gas implications of a UK gas supply transformation on a future low carbon electricity sector," Energy, Elsevier, vol. 118(C), pages 937-949.
    14. Parantap Basu & Tooraj Jamasb, 2019. "On Green Growth with Sustainable Capital," Working Papers 2019_06, Durham University Business School.
    15. Xu, Gang & Li, Le & Yang, Yongping & Tian, Longhu & Liu, Tong & Zhang, Kai, 2012. "A novel CO2 cryogenic liquefaction and separation system," Energy, Elsevier, vol. 42(1), pages 522-529.
    16. Roman Grynberg & Teresa Kaulihowa & Fwasa K Singogo, 2019. "Structural Changes of the 21st Century and their Impact on the Gold Price," Journal of Economics and Behavioral Studies, AMH International, vol. 11(3), pages 72-83.
    17. Ayres, Robert U., 2008. "Sustainability economics: Where do we stand?," Ecological Economics, Elsevier, vol. 67(2), pages 281-310, September.
    18. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    19. Kagraoka, Yusho, 2016. "Common dynamic factors in driving commodity prices: Implications of a generalized dynamic factor model," Economic Modelling, Elsevier, vol. 52(PB), pages 609-617.
    20. Simon Baptist & Cameron Hepburn, 2012. "Intermediate inputs and economic productivity," GRI Working Papers 95, Grantham Research Institute on Climate Change and the Environment.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:9:p:5640-5648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.