IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224010090.html
   My bibliography  Save this article

Load forecasting for regional integrated energy system based on two-phase decomposition and mixture prediction model

Author

Listed:
  • Shi, Jian
  • Teh, Jiashen
  • Alharbi, Bader
  • Lai, Ching-Ming

Abstract

Current load forecasting methods struggle with the randomness and complexity of multiple loads in regional integrated energy systems, resulting in less accurate predictions. To address this problem, this paper proposes a novel two-phase decomposition hybrid forecasting model that combines complementary ensemble empirical mode decomposition, sample entropy, variational mode decomposition, and genetic algorithm-bidirectional long short term memory. The proposed approach begins by decomposing the load sequence into multiple intrinsic mode function components at different frequencies using complementary ensemble empirical mode decomposition. Afterward, the sample entropy values are calculated for each intrinsic mode function. The intrinsic mode function with the highest sample entropy value is subjected to a two-stage decomposition using the variational mode decomposition method. Through this technique, a series of stationary components is acquired. Subsequently, the bidirectional long short term memory model is optimized using the genetic algorithm, and the genetic algorithm-bidirectional long short term memory approach is employed to predict all the decomposed components. Finally, the prediction results are combined and reconstructed to obtain the final prediction value. Experimental results demonstrate the effective handling of non-stationary load sequences by the forecasting model, showcasing the highest level of accuracy in regional integrated energy system multiple loads forecasting.

Suggested Citation

  • Shi, Jian & Teh, Jiashen & Alharbi, Bader & Lai, Ching-Ming, 2024. "Load forecasting for regional integrated energy system based on two-phase decomposition and mixture prediction model," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010090
    DOI: 10.1016/j.energy.2024.131236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.