IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224009666.html
   My bibliography  Save this article

Energy storage, thermal-hydraulic, and thermodynamic characteristics of a latent thermal energy storage system with 180-degree bifurcated fractal fins

Author

Listed:
  • Hong, Yuxiang
  • Cheng, Zihao
  • Li, Qing
  • Du, Juan

Abstract

The low thermal conductivity of organic phase change materials limits the performance of latent thermal energy storage (TES) systems. Inspired by fractal theory, this study proposes an innovative 180° fractal fin for enhancing the thermal performance of latent TES systems. The effects of length ratios (l) and fractal levels (N) are numerically investigated employing the enthalpy-porosity method. Compared with traditional rectangular fins, the results indicate that the 180° fractal fins reduce the integral average value of the maximum velocity by 2.24%–48.51%, which indicates the suppression of natural convection by the latter. Increasing l and N result in a general increase in melting time. Compared to the TES systems without fins and with rectangular fins, the 180° fractal fins can respectively reduce melting time by up to 88.79% and 28.00%, increase integral average Nusselt number by up to 7.30 times and 34.21%, and enhance energy storage power by a maximum of 8.55 times and 38.71%. Moreover, flow viscous entropy generation can be neglected compared to thermal entropy generation. In contrast to rectangular fins, the employment of fractal fins leads to a maximum reduction of 90.06% and 99.10% in total frictional entropy generation and thermal entropy generation, respectively.

Suggested Citation

  • Hong, Yuxiang & Cheng, Zihao & Li, Qing & Du, Juan, 2024. "Energy storage, thermal-hydraulic, and thermodynamic characteristics of a latent thermal energy storage system with 180-degree bifurcated fractal fins," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009666
    DOI: 10.1016/j.energy.2024.131193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.