IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224009186.html
   My bibliography  Save this article

A comprehensive multi-variable approach for evaluating the feasibility of integration a novel heat recovery model into a gas turbine power plant, producing electricity, heat, and methanol

Author

Listed:
  • Tan, Hua
  • Bo, Likang
  • Nutakki, Tirumala Uday Kumar
  • Agrawal, Manoj Kumar
  • Seikh, Asiful H.
  • Tahir Chauhdary, Sohaib
  • Shah, Nehad Ali
  • Ji, Tiancheng

Abstract

Considering the importance of efficient thermal integration for a gas turbine cycle using its energetic flue gas, the current paper proposes an eco-friendly and efficient process integrated into a gas turbine cycle. The newly designed polygeneration structure produces power, hot water, and methanol. The components of this system include a heat provider unit, a direct carbon dioxide hydrogenation unit for the production of methanol, an ammonia Rankine cycle, a proton exchange membrane electrolyzer, a supercritical carbon dioxide power cycle, and two organic Rankine cycles. The feasibility of the proposed model is evaluated using a comprehensive multi-variable assessment from energy, exergy, economic, and environmental approaches. This system exhibits a power production capacity of 17197.23 kW and a methanol generation rate of 0.7573 kg/s. Also, the total irreversibility is equal to 68161.18 kW. Besides, the total energy and exergy efficiencies are found as 68.73% and 32.03%, respectively. This model's carbon dioxide emission is 18667.36 kgCO2/h, and its carbon footprint equals 0.2196 kgCO2/kWh. Furthermore, the economic analysis reveals that the project has an annual total cost of 194,602,338 and a net present value of 686,221,616. Besides, the computed total unit costs for products and energy are 0.3385 $/kWh and 89.81 $/GJ, respectively.

Suggested Citation

  • Tan, Hua & Bo, Likang & Nutakki, Tirumala Uday Kumar & Agrawal, Manoj Kumar & Seikh, Asiful H. & Tahir Chauhdary, Sohaib & Shah, Nehad Ali & Ji, Tiancheng, 2024. "A comprehensive multi-variable approach for evaluating the feasibility of integration a novel heat recovery model into a gas turbine power plant, producing electricity, heat, and methanol," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009186
    DOI: 10.1016/j.energy.2024.131145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.