IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224009101.html
   My bibliography  Save this article

Experimental study of the new composite materials for thermochemical energy storage

Author

Listed:
  • Wojtacha-Rychter, Karolina
  • Król, Magdalena
  • Lalik, Erwin
  • Śliwa, Michał
  • Kucharski, Piotr
  • Magdziarczyk, Małgorzata
  • Smoliński, Adam

Abstract

Thermochemical energy storage (TCES) is a promising technology to support the world's initiatives to reduce CO2 emissions and limit global warming. In this paper, we have synthesized and characterized a new three-component composite materials consisting of a mixture of calcium chloride and iron powder confined inside the expanded vermiculite. The new approaches of studying composite sorbents of ammonia using a gas flow-through microcalorimetry proposed in this work. The energetics of adsorption as a function of ammonia uptake was measured at room temperature (RT), 106 and 150 °C. The enthalpy of NH3 sorption in eight cycles tested ranged from 12.2 to 39.1 kJ mol−1. The strength of ammonia sorption on composite surface was characterized by TPD (Temperature Programmed Desorption). Based on the NH3-TPD profiles of composites it was found that the high-temperature desorption peaks of vermiculite sample shifted to lower temperature after the deposition of salt. The characterization of the composites was complemented by the laboratory analyses using XRD, WD-XRF, FTIR, TG/DTG, SEM-EDS and nitrogen sorption isotherms at −196 °C (BET method). The composite impregnated with 37 wt% of salt has the highest enthalpy and sorption capacity, thus seems to be the most promising candidates for the heat storage systems.

Suggested Citation

  • Wojtacha-Rychter, Karolina & Król, Magdalena & Lalik, Erwin & Śliwa, Michał & Kucharski, Piotr & Magdziarczyk, Małgorzata & Smoliński, Adam, 2024. "Experimental study of the new composite materials for thermochemical energy storage," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009101
    DOI: 10.1016/j.energy.2024.131137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Energy storage; Enthalpy; TPD; NH3 adsorption; Composites; Vermiculite;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.