IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224008272.html
   My bibliography  Save this article

Profit-effective component sizing for electric delivery trucks with dual motor coupling powertrain

Author

Listed:
  • Ju, Fei
  • Du, Wei
  • Zhuang, Weichao
  • Li, Bingbing
  • Wang, Tao
  • Wang, Weiwei
  • Ma, Huijie

Abstract

This study proposes a novel component sizing method for electric delivery trucks (EDTs) employing dual motor coupling powertrain (DMCP) to enhance both the energy efficiency and operating profitability. A control-oriented model for the EDT is first established, encompassing the three-mode DMCP dynamics. Variations in component size and mass have been modeled, with consideration of their effects on the load capacity. To maximize the average profit per kilometer over the truck’s lifespan, four objective functions are defined to accommodate to the diverse types of cargo being transported. We formulate the optimization problem in a bi-level form, and propose a solution method that combines particle swarm optimization (PSO) handling parameter filtering with iterative dynamic programming (IDP) to minimize energy consumption. Three real-world delivery tests show that component sizing leads to an increase in the average profit per kilometer by 2.62%–8.10%. Upon evaluating the impact of powertrain and battery mass/volume on cargo capacity, the battery pricing ceases to impact the sizing of components. However, the electricity price and freight significantly influence the optimal size of components. Moreover, a sensitivity analysis focusing on market price factors underscores the importance of component sizing for maximizing profit, particularly in scenarios where freight costs fluctuate in commercial settings.

Suggested Citation

  • Ju, Fei & Du, Wei & Zhuang, Weichao & Li, Bingbing & Wang, Tao & Wang, Weiwei & Ma, Huijie, 2024. "Profit-effective component sizing for electric delivery trucks with dual motor coupling powertrain," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008272
    DOI: 10.1016/j.energy.2024.131055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.