IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224008119.html
   My bibliography  Save this article

Integration of energy system and computable general equilibrium models: An approach complementing energy and economic representations for mitigation analysis

Author

Listed:
  • Nishiura, Osamu
  • Krey, Volker
  • Fricko, Oliver
  • van Ruijven, Bas
  • Fujimori, Shinichiro

Abstract

Energy system and computable general equilibrium (CGE) models play vital roles in climate change mitigation studies. These models have advantages and disadvantages, and attempts have been made to integrate them. This study aimed to describe the method for integrating energy system and CGE models and demonstrate the new model that captures the strengths of both models. The method developed in this study ensured the detailed convergence of the energy system by exchanging the results iteratively. We demonstrated the model integration by adopting the method to MESSAGEix-GLOBIOM and AIM/Hub and estimating a mitigation scenario that limits the temperature rise to below 2 °C under the middle-of-the-road socioeconomic projection in Shared Socioeconomic Pathways. As a result of the integration, the index showing the difference between the two models proposed in this study decreased from 1.0 to 0.066. Therefore, we confirmed that these models estimated consistent scenarios. The diagnostic indicators showed that compared to its counterpart CGE model, the newly-developed model was characterized by a higher contribution of demand-side reductions, a lesser alteration in the primary energy supply composition, and lower abatement costs. Given the convergence and advantages of the integrated framework, the proposed method is useful for further application to mitigation studies.

Suggested Citation

  • Nishiura, Osamu & Krey, Volker & Fricko, Oliver & van Ruijven, Bas & Fujimori, Shinichiro, 2024. "Integration of energy system and computable general equilibrium models: An approach complementing energy and economic representations for mitigation analysis," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008119
    DOI: 10.1016/j.energy.2024.131039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.