IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i9p5026-5034.html
   My bibliography  Save this article

Constraints of fossil fuels depletion on global warming projections

Author

Listed:
  • Chiari, Luca
  • Zecca, Antonio

Abstract

A scientific debate is in progress about the intersection of climate change with the new field of fossil fuels depletion geology. Here, new projections of atmospheric CO2 concentration and global-mean temperature change are presented, should fossil fuels be exploited at a rate limited by geological availability only. The present work starts from the projections of fossil energy use, as obtained from ten independent sources. From such projections an upper bound, a lower bound and an ensemble mean profile for fossil CO2 emissions until 2200 are derived. Using the coupled gas-cycle/climate model MAGICC, the corresponding climatic projections out to 2200 are obtained. We find that CO2 concentration might increase up to about 480 ppm (445-540 ppm), while the global-mean temperature increase w.r.t. 2000 might reach 1.2 °C (0.9-1.6 °C). However, future improvements of fossil fuels recovery and discoveries of new resources might lead to higher emissions; hence our climatic projections are likely to be underestimated. In the absence of actions of emissions reduction, a level of dangerous anthropogenic interference with the climate system might be already experienced toward the middle of the 21st century, despite the constraints imposed by the exhaustion of fossil fuels.

Suggested Citation

  • Chiari, Luca & Zecca, Antonio, 2011. "Constraints of fossil fuels depletion on global warming projections," Energy Policy, Elsevier, vol. 39(9), pages 5026-5034, September.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:5026-5034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511004654
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zecca, Antonio & Chiari, Luca, 2010. "Fossil-fuel constraints on global warming," Energy Policy, Elsevier, vol. 38(1), pages 1-3, January.
    2. Nel, Willem P. & Cooper, Christopher J., 2009. "Implications of fossil fuel constraints on economic growth and global warming," Energy Policy, Elsevier, vol. 37(1), pages 166-180, January.
    3. Aleklett, Kjell & Höök, Mikael & Jakobsson, Kristofer & Lardelli, Michael & Snowden, Simon & Söderbergh, Bengt, 2010. "The Peak of the Oil Age - Analyzing the world oil production Reference Scenario in World Energy Outlook 2008," Energy Policy, Elsevier, vol. 38(3), pages 1398-1414, March.
    4. Stuart Arthur Harris (ed.), 2010. "Global Warming," Books, IntechOpen, number 818, January-J.
    5. Ken Gregory & Hans-Holger Rogner, 1998. "Energy Resources and Conversion Technologies for the 21st Century," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 171-230, December.
    6. Jakobsson, Kristofer & Söderbergh, Bengt & Höök, Mikael & Aleklett, Kjell, 2009. "How reasonable are oil production scenarios from public agencies?," Energy Policy, Elsevier, vol. 37(11), pages 4809-4818, November.
    7. Owen, Nick A. & Inderwildi, Oliver R. & King, David A., 2010. "The status of conventional world oil reserves--Hype or cause for concern?," Energy Policy, Elsevier, vol. 38(8), pages 4743-4749, August.
    8. Brecha, Robert J., 2008. "Emission scenarios in the face of fossil-fuel peaking," Energy Policy, Elsevier, vol. 36(9), pages 3492-3504, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pambudi, Nugroho Agung & Itoi, Ryuichi & Jalilinasrabady, Saeid & Jaelani, Khasani, 2015. "Performance improvement of a single-flash geothermal power plant in Dieng, Indonesia, upon conversion to a double-flash system using thermodynamic analysis," Renewable Energy, Elsevier, vol. 80(C), pages 424-431.
    2. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    3. Neeraj Sharma & Rajat Agrawal, 2017. "Locating a Wind Energy Project: A Case of a Leading Oil and Gas Producer in India," Vision, , vol. 21(2), pages 172-194, June.
    4. Tahseen, Samiha & Karney, Bryan W., 2017. "Reviewing and critiquing published approaches to the sustainability assessment of hydropower," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 225-234.
    5. George E. Halkos & Eleni-Christina Gkampoura, 2020. "Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources," Energies, MDPI, vol. 13(11), pages 1-19, June.
    6. Galadima, Ahmad & Muraza, Oki, 2018. "Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: Role of heterogeneous catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1037-1048.
    7. Hasan Mahmud & Joyashree Roy, 2021. "Barriers to Overcome in Accelerating Renewable Energy Penetration in Bangladesh," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
    8. Ishaq, H. & Dincer, I., 2021. "Comparative assessment of renewable energy-based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Sarker, M., 2015. "Energy scarcity and potential of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1636-1649.
    10. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    11. Natividade, Pablo Sampaio Gomes & de Moraes Moura, Gabriel & Avallone, Elson & Bandarra Filho, Enio Pedone & Gelamo, Rogério Valentim & Gonçalves, Júlio Cesar de Souza Inácio, 2019. "Experimental analysis applied to an evacuated tube solar collector equipped with parabolic concentrator using multilayer graphene-based nanofluids," Renewable Energy, Elsevier, vol. 138(C), pages 152-160.
    12. Han, Youhua & Liu, Yang & Lu, Shixiang & Basalike, Pie & Zhang, Jili, 2021. "Electrical performance and power prediction of a roll-bond photovoltaic thermal array under dewing and frosting conditions," Energy, Elsevier, vol. 237(C).
    13. Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
    14. Hil Baky, Md. Abdullah & Rahman, Md. Mustafizur & Islam, A.K.M. Sadrul, 2017. "Development of renewable energy sector in Bangladesh: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1184-1197.
    15. Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
    16. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    17. Sakmani, Ahmad Safwan & Lam, Wei-Haur & Hashim, Roslan & Chong, Heap-Yih, 2013. "Site selection for tidal turbine installation in the Strait of Malacca," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 590-602.
    18. Ali Javaid & Umer Javaid & Muhammad Sajid & Muhammad Rashid & Emad Uddin & Yasar Ayaz & Adeel Waqas, 2022. "Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning," Energies, MDPI, vol. 15(23), pages 1-13, November.
    19. Rokas Tamašauskas & Jolanta Šadauskienė & Dorota Anna Krawczyk & Violeta Medelienė, 2020. "Analysis of Primary Energy Factors from Photovoltaic Systems for a Nearly Zero Energy Building (NZEB): A Case Study in Lithuania," Energies, MDPI, vol. 13(16), pages 1-15, August.
    20. Rial, Rafael Cardoso, 2024. "Biofuels versus climate change: Exploring potentials and challenges in the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    21. Han, Youhua & Ma, Liangdong & Zhang, Jili & Mi, Peiyuan & Guo, Xiaochao, 2023. "Research on the adaptive proportional-integral control method of a direct-expansion photovoltaic-thermal heat pump system," Energy, Elsevier, vol. 281(C).
    22. George E. Halkos & Eleni-Christina Gkampoura, 2021. "Examining the Linkages among Carbon Dioxide Emissions, Electricity Production and Economic Growth in Different Income Levels," Energies, MDPI, vol. 14(6), pages 1-24, March.
    23. Yepes, Hernando A. & Obando, Julián E. & Amell, Andrés A., 2022. "The effect of syngas addition on flameless natural gas combustion in a regenerative furnace," Energy, Elsevier, vol. 252(C).
    24. Kim, Tae-Woo & Lee, Eun-Han & Byun, Segi & Seo, Doo-Won & Hwang, Hyo-Jung & Yoon, Hyung-Chul & Kim, Hansung & Ryi, Shin-Kun, 2022. "Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    2. Warrilow, David, 2015. "A bumpy road to the top: Statistically defining a peak in oil production," Energy Policy, Elsevier, vol. 82(C), pages 81-84.
    3. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    4. Robert J. Brecha, 2013. "Ten Reasons to Take Peak Oil Seriously," Sustainability, MDPI, vol. 5(2), pages 1-31, February.
    5. Lloyd, Bob & Forest, Andrew S., 2010. "The transition to renewables: Can PV provide an answer to the peak oil and climate change challenges?," Energy Policy, Elsevier, vol. 38(11), pages 7378-7394, November.
    6. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    7. Fantazzini, Dean & Höök, Mikael & Angelantoni, André, 2011. "Global oil risks in the early 21st century," Energy Policy, Elsevier, vol. 39(12), pages 7865-7873.
    8. Jess, Andreas, 2010. "What might be the energy demand and energy mix to reconcile the world's pursuit of welfare and happiness with the necessity to preserve the integrity of the biosphere?," Energy Policy, Elsevier, vol. 38(8), pages 4663-4678, August.
    9. Höök, M. & Söderbergh, B. & Aleklett, K., 2009. "Future Danish oil and gas export," Energy, Elsevier, vol. 34(11), pages 1826-1834.
    10. Pereira, Alfredo M. & Pereira, Rui M., 2014. "On the environmental, economic and budgetary impacts of fossil fuel prices: A dynamic general equilibrium analysis of the Portuguese case," Energy Economics, Elsevier, vol. 42(C), pages 248-261.
    11. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    12. Harvey, L.D.D., 2013. "Global climate-oriented transportation scenarios," Energy Policy, Elsevier, vol. 54(C), pages 87-103.
    13. Glynn, James & Chiodi, Alessandro & Gargiulo, Maurizio & Deane, J.P. & Bazilian, Morgan & Gallachóir, Brian Ó, 2014. "Energy Security Analysis: The case of constrained oil supply for Ireland," Energy Policy, Elsevier, vol. 66(C), pages 312-325.
    14. Lutz, Christian & Lehr, Ulrike & Wiebe, Kirsten S., 2012. "Economic effects of peak oil," Energy Policy, Elsevier, vol. 48(C), pages 829-834.
    15. Rajneesh, & Singh, Shailendra P. & Pathak, Jainendra & Sinha, Rajeshwer P., 2017. "Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 578-595.
    16. Logar, Ivana & van den Bergh, Jeroen C.J.M., 2013. "The impact of peak oil on tourism in Spain: An input–output analysis of price, demand and economy-wide effects," Energy, Elsevier, vol. 54(C), pages 155-166.
    17. Valero, Antonio & Agudelo, Andrés & Valero, Alicia, 2011. "The crepuscular planet. A model for the exhausted atmosphere and hydrosphere," Energy, Elsevier, vol. 36(6), pages 3745-3753.
    18. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    19. Rye, Craig D. & Jackson, Tim, 2018. "A review of EROEI-dynamics energy-transition models," Energy Policy, Elsevier, vol. 122(C), pages 260-272.
    20. van Moerkerk, Mike & Crijns-Graus, Wina, 2016. "A comparison of oil supply risks in EU, US, Japan, China and India under different climate scenarios," Energy Policy, Elsevier, vol. 88(C), pages 148-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:5026-5034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.