IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i6p1957-1968.html
   My bibliography  Save this article

Energy intensity and greenhouse gas emission of a purchase in the retail park service sector: An integrative approach

Author

Listed:
  • Farreny, Ramon
  • Gabarrell, Xavier
  • Rieradevall, Joan

Abstract

The aim of this paper is to describe the energetic metabolism of a retail park service system under an integrative approach. Energy flow accounting was applied to a case study retail park in Spain, representative of the sector across Europe, after redefining the functional unit to account for both direct energy use (buildings, gardens and outdoor lighting) and indirect energy use (employee and customer transportation). A life cycle assessment (LCA) was then undertaken to determine energy global warming potential (GWP) and some energy intensity and greenhouse gases (GHG) emission indicators were defined and applied. The results emphasise the importance of service systems in global warming policies, as a potential emission of 9.26Â kg CO2/purchase was obtained for the case study, relating to a consumption of 1.64 KOE of energy, of which 21.9% was spent on buildings and 57.9% on customer transportation. Some strategies to reduce these emissions were considered: increased supply, energy efficiency, changes in distribution of modes of transport, changes in location and changes in the mix of land uses. A combination of all of these elements in a new retail park could reduce GHG emissions by more than 50%, as it is planning strategies, which seem to be the most effective.

Suggested Citation

  • Farreny, Ramon & Gabarrell, Xavier & Rieradevall, Joan, 2008. "Energy intensity and greenhouse gas emission of a purchase in the retail park service sector: An integrative approach," Energy Policy, Elsevier, vol. 36(6), pages 1957-1968, June.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:6:p:1957-1968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00088-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mindali, Orit & Raveh, Adi & Salomon, Ilan, 2004. "Urban density and energy consumption: a new look at old statistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 143-162, February.
    2. Muniz, Ivan & Galindo, Anna, 2005. "Urban form and the ecological footprint of commuting. The case of Barcelona," Ecological Economics, Elsevier, vol. 55(4), pages 499-514, December.
    3. Eric Williams & Takashi Tagami, 2002. "Energy Use in Sales and Distribution via E‐Commerce and Conventional Retail: A Case Study of the Japanese Book Sector," Journal of Industrial Ecology, Yale University, vol. 6(2), pages 99-114, April.
    4. Krausmann, Fridolin & Haberl, Helmut, 2002. "The process of industrialization from the perspective of energetic metabolism: Socioeconomic energy flows in Austria 1830-1995," Ecological Economics, Elsevier, vol. 41(2), pages 177-201, May.
    5. Shore, William B., 2006. "Land-use, transportation and sustainability," Technology in Society, Elsevier, vol. 28(1), pages 27-43.
    6. Jordi Oliver‐Solà & Montserrat Núñez & Xavier Gabarrell & Martí Boada & Joan Rieradevall, 2007. "Service Sector Metabolism: Accounting for Energy Impacts of the Montjuic Urban Park in Barcelona," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 83-98, April.
    7. Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
    8. Vadas, Timothy M. & Fahey, Timothy J. & Sherman, Ruth E. & Kay, David, 2007. "Local-scale analysis of carbon mitigation strategies: Tompkins County, New York, USA," Energy Policy, Elsevier, vol. 35(11), pages 5515-5525, November.
    9. Seppo Junnila, 2006. "Alternative Scenarios for Managing the Environmental Performance of a Service Sector Company," Journal of Industrial Ecology, Yale University, vol. 10(4), pages 113-131, October.
    10. Zia, Hina & Devadas, V., 2007. "Energy management in Lucknow city," Energy Policy, Elsevier, vol. 35(10), pages 4847-4868, October.
    11. Sadownik, Bryn & Jaccard, Mark, 2001. "Sustainable energy and urban form in China: the relevance of community energy management," Energy Policy, Elsevier, vol. 29(1), pages 55-65, January.
    12. Buck, J. & Young, D., 2007. "The potential for energy efficiency gains in the Canadian commercial building sector: A stochastic frontier study," Energy, Elsevier, vol. 32(9), pages 1769-1780.
    13. Helmut Haberl, 2001. "The Energetic Metabolism of Societies: Part II: Empirical Examples," Journal of Industrial Ecology, Yale University, vol. 5(2), pages 71-88, April.
    14. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    15. Helmut Haberl, 2001. "The Energetic Metabolism of Societies Part I: Accounting Concepts," Journal of Industrial Ecology, Yale University, vol. 5(1), pages 11-33, January.
    16. Jaber, J. O. & Mohsen, M. S. & Al-Sarkhi, A. & Akash, B., 2003. "Energy analysis of Jordan's commercial sector," Energy Policy, Elsevier, vol. 31(9), pages 887-894, July.
    17. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    18. Jaccard, Mark & Failing, Lee & Berry, Trent, 1997. "From equipment to infrastructure: community energy management and greenhouse gas emission reduction," Energy Policy, Elsevier, vol. 25(13), pages 1065-1074, November.
    19. Xuemei Bai, 2007. "Industrial Ecology and the Global Impacts of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuefen Liu & Chang Gan & Mihai Voda, 2024. "Analysis of the Effect of Environmental Regulation on Eco-Efficiency of Service Sector," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    2. Montserrat Núñez & Jordi Oliver-Solà & Joan Rieradevall & Xavier Gabarrell, 2010. "Water Management in Integrated Service Systems: Accounting for Water Flows in Urban Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1583-1604, June.
    3. Rowangould, Dana & Eldridge, Melody & Niemeier, Deb, 2013. "Incorporating regional growth into forecasts of greenhouse gas emissions from project-level residential and commercial development," Energy Policy, Elsevier, vol. 62(C), pages 1288-1300.
    4. Oliver-Solà, Jordi & Armero, Marina & de Foix, Blanca Martinez & Rieradevall, Joan, 2013. "Energy and environmental evaluation of municipal facilities: Case study in the province of Barcelona," Energy Policy, Elsevier, vol. 61(C), pages 920-930.
    5. Facchini, Angelo & Kennedy, Chris & Stewart, Iain & Mele, Renata, 2017. "The energy metabolism of megacities," Applied Energy, Elsevier, vol. 186(P2), pages 86-95.
    6. Ramon Farreny & Jordi Oliver-Solà & Marc Montlleó & Enric Escribà & Xavier Gabarrell & Joan Rieradevall, 2011. "Transition towards Sustainable Cities: Opportunities, Constraints, and Strategies in Planning. A Neighbourhood Ecodesign Case Study in Barcelona," Environment and Planning A, , vol. 43(5), pages 1118-1134, May.
    7. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cusso, Xavier & Garrabou, Ramon & Tello, Enric, 2006. "Social metabolism in an agrarian region of Catalonia (Spain) in 1860-1870: Flows, energy balance and land use," Ecological Economics, Elsevier, vol. 58(1), pages 49-65, June.
    2. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    3. Haberl, Helmut, 2006. "The global socioeconomic energetic metabolism as a sustainability problem," Energy, Elsevier, vol. 31(1), pages 87-99.
    4. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    5. Galychyn, Oleksandr, 2022. "Towards sustainable cities: A multi-criteria assessment framework for studying urban metabolism," MPRA Paper 121584, University Library of Munich, Germany, revised 11 May 2022.
    6. Fridolin Krausmann & Marina Fischer-Kowalski & Heinz Schandl & Nina Eisenmenger, 2008. "The Global Sociometabolic Transition," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 637-656, October.
    7. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    8. Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB) & Asian Development Bank (ADB), 2014. "Urban Metabolism of Six Asian Cities," ADB Reports RPT146817-2, Asian Development Bank (ADB).
    9. Marique, Anne-Francoise & Dujardin, Sébastien & Teller, Jacques & Reiter, Sigrid, 2013. "School commuting: the relationship between energy consumption and urban form," Journal of Transport Geography, Elsevier, vol. 26(C), pages 1-11.
    10. Aguiléra, Anne & Voisin, Marion, 2014. "Urban form, commuting patterns and CO2 emissions: What differences between the municipality’s residents and its jobs?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 243-251.
    11. Paul Steenwyk & Matthew Kuperus Heun & Paul Brockway & Tânia Sousa & Sofia Henriques, 2022. "The Contributions of Muscle and Machine Work to Land and Labor Productivity in World Agriculture Since 1800," Biophysical Economics and Resource Quality, Springer, vol. 7(2), pages 1-17, June.
    12. Marull, Joan & Torabi, Parisa & Padró, Roc & Alabert, Aureli & La Rota, Maria José & Serrano, Tarik, 2020. "Energy-Landscape Optimization for Land Use Planning. Application in the Barcelona Metropolitan Area," Ecological Modelling, Elsevier, vol. 431(C).
    13. Ahfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2017. "The compact city in empirical research: A quantitative literature review," LSE Research Online Documents on Economics 83638, London School of Economics and Political Science, LSE Library.
    14. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    15. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    16. Arjan Van Timmeren & Jonna Zwetsloot & Han Brezet & Sacha Silvester, 2012. "Sustainable Urban Regeneration Based on Energy Balance," Sustainability, MDPI, vol. 4(7), pages 1-22, July.
    17. Grabher, Harald F. & Erb, Karlheinz & Singh, Simron & Haberl, Helmut, 2024. "Household energy systems based on biomass: Tracing material flows from source to service in rural Ethiopia," Ecological Economics, Elsevier, vol. 217(C).
    18. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    19. Han, Wenyi & Geng, Yong & Lu, Yangsiyu & Wilson, Jeffrey & Sun, Lu & Satoshi, Onishi & Geldron, Alain & Qian, Yiying, 2018. "Urban metabolism of megacities: A comparative analysis of Shanghai, Tokyo, London and Paris to inform low carbon and sustainable development pathways," Energy, Elsevier, vol. 155(C), pages 887-898.
    20. Kostas Bithas & Panos Kalimeris & Eleni Koilakou, 2021. "Re‐estimating the energy intensity of growth with implications for sustainable development. The myth of the decoupling effect," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 441-452, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:6:p:1957-1968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.