IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v67y2017icp17-27.html
   My bibliography  Save this article

Google search keywords that best predict energy price volatility

Author

Listed:
  • Afkhami, Mohamad
  • Cormack, Lindsey
  • Ghoddusi, Hamed

Abstract

Internet search activity data has been widely used as an instrument to approximate trader attention in different markets. This method has proven effective in predicting market indices in the short-term. However, little attention has been paid to demonstrating search activity for keywords that best grab investor attention in different markets. This study attempts to build the best practically possible proxy for attention in the market for energy commodities using Google search data. Specifically, we confirm the utility of Google search activity for energy related keywords are significant predictors of volatility by showing they have incremental predictive power beyond the conventional GARCH models in predicting volatility for energy commodities' prices. Starting with a set of ninety terms used in the energy sector, the study uses a multistage filtering process to create combinations of keywords that best predict the volatility of crude oil (Brent and West Texas Intermediate), conventional gasoline (New York Harbor and US Gulf Coast), heating oil (New York Harbor), and natural gas prices. For each commodity, combinations that enhance GARCH most effectively are established as proxies of attention. The results indicate investor attention is widely reflected in Internet search activities and demonstrate search data for what keywords best reveal the direction of concern and attention in energy markets.

Suggested Citation

  • Afkhami, Mohamad & Cormack, Lindsey & Ghoddusi, Hamed, 2017. "Google search keywords that best predict energy price volatility," Energy Economics, Elsevier, vol. 67(C), pages 17-27.
  • Handle: RePEc:eee:eneeco:v:67:y:2017:i:c:p:17-27
    DOI: 10.1016/j.eneco.2017.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317302517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Qiang & Guo, Jian-Feng, 2015. "Oil price volatility and oil-related events: An Internet concern study perspective," Applied Energy, Elsevier, vol. 137(C), pages 256-264.
    2. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    3. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    4. Guo, Jian-Feng & Ji, Qiang, 2013. "How does market concern derived from the Internet affect oil prices?," Applied Energy, Elsevier, vol. 112(C), pages 1536-1543.
    5. Li, Xin & Ma, Jian & Wang, Shouyang & Zhang, Xun, 2015. "How does Google search affect trader positions and crude oil prices?," Economic Modelling, Elsevier, vol. 49(C), pages 162-171.
    6. Busse, Jeffrey A. & Clifton Green, T., 2002. "Market efficiency in real time," Journal of Financial Economics, Elsevier, vol. 65(3), pages 415-437, September.
    7. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    8. Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
    9. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Smith, Geoffrey Peter, 2012. "Google Internet search activity and volatility prediction in the market for foreign currency," Finance Research Letters, Elsevier, vol. 9(2), pages 103-110.
    12. Genaro Sucarrat & Alvaro Escribano, 2012. "Automated Model Selection in Finance: General-to-Specific Modelling of the Mean and Volatility Specifications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(5), pages 716-735, October.
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    14. Lee, Charles M. C., 1992. "Earnings news and small traders : An intraday analysis," Journal of Accounting and Economics, Elsevier, vol. 15(2-3), pages 265-302, August.
    15. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    16. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    17. Joseph, Kissan & Babajide Wintoki, M. & Zhang, Zelin, 2011. "Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1116-1127, October.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    2. González-Fernández, Marcos & González-Velasco, Carmen, 2020. "A sentiment index to measure sovereign risk using Google data," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 406-418.
    3. Smales, L.A., 2021. "Investor attention and global market returns during the COVID-19 crisis," International Review of Financial Analysis, Elsevier, vol. 73(C).
    4. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    5. Nikkinen, Jussi & Rothovius, Timo, 2019. "The EIA WPSR release, OVX and crude oil internet interest," Energy, Elsevier, vol. 166(C), pages 131-141.
    6. Hervé, Fabrice & Zouaoui, Mohamed & Belvaux, Bertrand, 2019. "Noise traders and smart money: Evidence from online searches," Economic Modelling, Elsevier, vol. 83(C), pages 141-149.
    7. Georgios Bampinas & Theodore Panagiotidis & Christina Rouska, 2019. "Volatility persistence and asymmetry under the microscope: the role of information demand for gold and oil," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(1), pages 180-197, February.
    8. Christophe Desagre & Catherine D'Hondt, 2020. "Googlization and retail investors' trading activity," LIDAM Discussion Papers LFIN 2020004, Université catholique de Louvain, Louvain Finance (LFIN).
    9. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    10. Desagre, Christophe & D’Hondt, Catherine, 2021. "Googlization and retail trading activity," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    11. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Attention to oil prices and its impact on the oil, gold and stock markets and their covariance," Energy Economics, Elsevier, vol. 120(C).
    12. Li, Sufang & Zhang, Hu & Yuan, Di, 2019. "Investor attention and crude oil prices: Evidence from nonlinear Granger causality tests," Energy Economics, Elsevier, vol. 84(C).
    13. Peltomäki, Jarkko & Graham, Michael & Hasselgren, Anton, 2018. "Investor attention to market categories and market volatility: The case of emerging markets," Research in International Business and Finance, Elsevier, vol. 44(C), pages 532-546.
    14. Cai, Wenwu & Lu, Jing, 2019. "Investors’ financial attention frequency and trading activity," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    15. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    16. Chen, Zhongdong & Craig, Karen Ann, 2023. "Active attention, retail investor base, and stock returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    17. Pham, Linh & Cepni, Oguzhan, 2022. "Extreme directional spillovers between investor attention and green bond markets," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 186-210.
    18. Semen Son Turan, 2014. "Internet Search Volume and Stock Return Volatility: The Case of Turkish Companies," Information Management and Business Review, AMH International, vol. 6(6), pages 317-328.
    19. de Castro, Jessica & Piccoli, Pedro, 2023. "Do online searches actually measure future retail investor trades?," International Review of Financial Analysis, Elsevier, vol. 86(C).
    20. Zhang, Yongjie & Chu, Gang & Shen, Dehua, 2021. "The role of investor attention in predicting stock prices: The long short-term memory networks perspective," Finance Research Letters, Elsevier, vol. 38(C).

    More about this item

    Keywords

    Google search activity; Energy market; Volatility prediction; Energy price volatility;
    All these keywords.

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • B26 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Financial Economics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:67:y:2017:i:c:p:17-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.