IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v129y2024ics0140988323006825.html
   My bibliography  Save this article

Emission intensities in the Australian National Electricity Market – An econometric analysis

Author

Listed:
  • Ming, Wei
  • Nazifi, Fatemeh
  • Trück, Stefan

Abstract

This study examines the evolution of CO2 emission intensities in the wholesale electricity sector for the National Electricity Market (NEM) in Australia. Using daily data, we examine the impact of demand, changes in the generation mix, as well as the closure of major coal-fired power plants on emission intensities in the four largest regional markets of the NEM. Particular emphasis is also placed on the assessment of any potential association between the examined driving factors and major Australian climate and energy policies such as the 2012–2014 Carbon Pricing Mechanism (CPM) or the Renewable Energy Target (RET) scheme. Our results suggest that changes in renewable deployment can be considered as the principal factor affecting emission intensities of all regional markets. Moreover, the fossil fuel mixture effect, more precisely the reduction in coal-fired generation combined with the increase in generation from gas and renewables, also played a significant role in reducing emission intensities in the Australian power sector. Interestingly, our findings suggest that the influence of the implemented CPM was not too substantial and had only temporary effects on emission intensities.

Suggested Citation

  • Ming, Wei & Nazifi, Fatemeh & Trück, Stefan, 2024. "Emission intensities in the Australian National Electricity Market – An econometric analysis," Energy Economics, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:eneeco:v:129:y:2024:i:c:s0140988323006825
    DOI: 10.1016/j.eneco.2023.107184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323006825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phil Wild & William Paul Bell & John Foster, 2012. "An Assessment of the Impact of the Introduction of Carbon Price Signals on Prices, Production Trends, Carbon Emissions and Power Flows in the NEM for the period 2007-2009," Energy Economics and Management Group Working Papers 4-2012, School of Economics, University of Queensland, Australia.
    2. Creti, Anna & Jouvet, Pierre-André & Mignon, Valérie, 2012. "Carbon price drivers: Phase I versus Phase II equilibrium?," Energy Economics, Elsevier, vol. 34(1), pages 327-334.
    3. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    4. Voorspools, Kris R. & D'haeseleer, William D., 2000. "An evaluation method for calculating the emission responsibility of specific electric applications," Energy Policy, Elsevier, vol. 28(13), pages 967-980, November.
    5. Clements, A.E. & Herrera, R. & Hurn, A.S., 2015. "Modelling interregional links in electricity price spikes," Energy Economics, Elsevier, vol. 51(C), pages 383-393.
    6. Mayer, Klaus & Trück, Stefan, 2018. "Electricity markets around the world," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 77-100.
    7. G. Boyd & J. F. McDonald & M. Ross & D. A. Hansont, 1987. "Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    8. Malla, Sunil, 2009. "CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: A decomposition analysis," Energy Policy, Elsevier, vol. 37(1), pages 1-9, January.
    9. Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.
    10. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    11. Wagner, Liam & Molyneaux, Lynette & Foster, John, 2014. "The magnitude of the impact of a shift from coal to gas under a Carbon Price," Energy Policy, Elsevier, vol. 66(C), pages 280-291.
    12. Nazifi, Fatemeh & Trück, Stefan & Zhu, Liangxu, 2021. "Carbon pass-through rates on spot electricity prices in Australia," Energy Economics, Elsevier, vol. 96(C).
    13. Marianna O'Gorman & Frank Jotzo, 2014. "Impact of the Carbon Price on Australia's Electricity Demand, Supply and Emissions," CCEP Working Papers 1411, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    14. Cubi, Eduard & Doluweera, Ganesh & Bergerson, Joule, 2015. "Incorporation of electricity GHG emissions intensity variability into building environmental assessment," Applied Energy, Elsevier, vol. 159(C), pages 62-69.
    15. Fatemeh Nazifi, 2016. "The pass-through rates of carbon costs on to electricity prices within the Australian National Electricity Market," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(1), pages 41-62, January.
    16. Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
    17. repec:dau:papers:123456789/5269 is not listed on IDEAS
    18. Frank Jotzo & Tim Jordan & Nathan Fabian, 2012. "Policy Uncertainty about Australia's Carbon Price: Expert Survey Results and Implications for Investment," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 45(4), pages 395-409, December.
    19. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
    20. Higgs, Helen & Worthington, Andrew, 2008. "Stochastic price modeling of high volatility, mean-reverting, spike-prone commodities: The Australian wholesale spot electricity market," Energy Economics, Elsevier, vol. 30(6), pages 3172-3185, November.
    21. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    22. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
    23. Sumabat, Ana Karmela & Lopez, Neil Stephen & Yu, Krista Danielle & Hao, Han & Li, Richard & Geng, Yong & Chiu, Anthony S.F., 2016. "Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation," Applied Energy, Elsevier, vol. 164(C), pages 795-804.
    24. Hawkes, A.D., 2010. "Estimating marginal CO2 emissions rates for national electricity systems," Energy Policy, Elsevier, vol. 38(10), pages 5977-5987, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    2. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    3. Apergis, Nicholas & Pan, Wei-Fong & Reade, James & Wang, Shixuan, 2023. "Modelling Australian electricity prices using indicator saturation," Energy Economics, Elsevier, vol. 120(C).
    4. Ang, B.W. & Goh, Tian, 2016. "Carbon intensity of electricity in ASEAN: Drivers, performance and outlook," Energy Policy, Elsevier, vol. 98(C), pages 170-179.
    5. Nazifi, Fatemeh & Trück, Stefan & Zhu, Liangxu, 2021. "Carbon pass-through rates on spot electricity prices in Australia," Energy Economics, Elsevier, vol. 96(C).
    6. Harmsen, Robert & Crijns-Graus, Wina, 2021. "Unhiding the role of CHP in power & heat sector decomposition analyses," Energy Policy, Elsevier, vol. 152(C).
    7. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    8. Pawel Maryniak & Stefan Trueck & Rafal Weron, 2016. "Carbon pricing, forward risk premiums and pass-through rates in Australian electricity futures markets," HSC Research Reports HSC/16/10, Hugo Steinhaus Center, Wroclaw University of Technology.
    9. Wang, Yongpei & Li, Jun, 2019. "Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China's provinces," Renewable Energy, Elsevier, vol. 136(C), pages 317-330.
    10. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    11. Maryniak, Paweł & Trück, Stefan & Weron, Rafał, 2019. "Carbon pricing and electricity markets — The case of the Australian Clean Energy Bill," Energy Economics, Elsevier, vol. 79(C), pages 45-58.
    12. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    13. Han, Lin & Kordzakhia, Nino & Trück, Stefan, 2020. "Volatility spillovers in Australian electricity markets," Energy Economics, Elsevier, vol. 90(C).
    14. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    15. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    16. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
    17. Yan, Guan & Trück, Stefan, 2020. "A dynamic network analysis of spot electricity prices in the Australian national electricity market," Energy Economics, Elsevier, vol. 92(C).
    18. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    19. Zhong-Hua Tian & Ze-Liang Yang, 2016. "Scenarios of Carbon Emissions from the Power Sector in Guangdong Province," Sustainability, MDPI, vol. 8(9), pages 1-14, August.
    20. Shiping Ma & Qianqian Liu & Wenzhong Zhang, 2022. "Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China," IJERPH, MDPI, vol. 19(6), pages 1-17, March.

    More about this item

    Keywords

    Electricity markets; Emission intensity; Generation mix; Carbon tax; Climate policy;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:129:y:2024:i:c:s0140988323006825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.