IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v202y2018i2p125-147.html
   My bibliography  Save this article

Estimation and inference of dynamic structural factor models with over-identifying restrictions

Author

Listed:
  • Han, Xu

Abstract

This paper develops a new estimator for the impulse response functions in structural factor models with a fixed number of over-identifying restrictions. The proposed identification scheme nests the conventional just-identified recursive scheme as a special case. We establish the asymptotic distributions of the new estimator and develop test statistics for the over-identifying restrictions. Simulation results show that adding a few more over-identifying restrictions can lead to a substantial improvement in estimation accuracy for impulse response functions at both zero and nonzero horizons. We estimate the effects of a monetary policy shock using a U.S. data set. The results show that our over-identified scheme can help to detect incorrect specifications that lead to spurious impulse responses.

Suggested Citation

  • Han, Xu, 2018. "Estimation and inference of dynamic structural factor models with over-identifying restrictions," Journal of Econometrics, Elsevier, vol. 202(2), pages 125-147.
  • Handle: RePEc:eee:econom:v:202:y:2018:i:2:p:125-147
    DOI: 10.1016/j.jeconom.2017.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407617301896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Eichenbaum & Charles L. Evans, 1995. "Some Empirical Evidence on the Effects of Shocks to Monetary Policy on Exchange Rates," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(4), pages 975-1009.
    2. Bai, Jushan & Wang, Peng, 2014. "Identification theory for high dimensional static and dynamic factor models," Journal of Econometrics, Elsevier, vol. 178(2), pages 794-804.
    3. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    4. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    5. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    6. Jean Boivin & Marc P. Giannoni & Ilian Mihov, 2009. "Sticky Prices and Monetary Policy: Evidence from Disaggregated US Data," American Economic Review, American Economic Association, vol. 99(1), pages 350-384, March.
    7. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    8. Christiano, Lawrence J. & Eichenbaum, Martin & Evans, Charles L., 1999. "Monetary policy shocks: What have we learned and to what end?," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 2, pages 65-148, Elsevier.
    9. Haroon Mumtaz & Paolo Surico, 2009. "The Transmission of International Shocks: A Factor-Augmented VAR Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(s1), pages 71-100, February.
    10. Han, Xu, 2015. "Tests for overidentifying restrictions in Factor-Augmented VAR models," Journal of Econometrics, Elsevier, vol. 184(2), pages 394-419.
    11. Caggiano, Giovanni & Castelnuovo, Efrem & Groshenny, Nicolas, 2014. "Uncertainty shocks and unemployment dynamics in U.S. recessions," Journal of Monetary Economics, Elsevier, vol. 67(C), pages 78-92.
    12. Gilchrist, Simon & Yankov, Vladimir & Zakrajsek, Egon, 2009. "Credit market shocks and economic fluctuations: Evidence from corporate bond and stock markets," Journal of Monetary Economics, Elsevier, vol. 56(4), pages 471-493, May.
    13. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noisy News in Business Cycles," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 122-152, October.
    14. Kociecki, Andrzej & Rubaszek, Michał & Ca' Zorzi, Michele, 2012. "Bayesian analysis of recursive SVAR models with overidentifying restrictions," Working Paper Series 1492, European Central Bank.
    15. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    16. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    17. Albrecht Ritschl & Samad Sarferaz, 2014. "Currency Versus Banking In The Financial Crisis Of 1931," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 349-373, May.
    18. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    19. Claudia M. Buch & Sandra Eickmeier & Esteban Prieto, 2014. "Macroeconomic Factors and Microlevel Bank Behavior," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(4), pages 715-751, June.
    20. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    21. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
    22. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    23. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    24. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    25. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    26. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    27. Forni, Mario & Gambetti, Luca, 2010. "The dynamic effects of monetary policy: A structural factor model approach," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 203-216, March.
    28. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    29. Bianchi, Francesco & Mumtaz, Haroon & Surico, Paolo, 2009. "The great moderation of the term structure of UK interest rates," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 856-871, September.
    30. Lutkepohl, Helmut & Burda, Maike M., 1997. "Modified Wald tests under nonregular conditions," Journal of Econometrics, Elsevier, vol. 78(2), pages 315-332, June.
    31. Jushan Bai & Peng Wang, 2015. "Identification and Bayesian Estimation of Dynamic Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 221-240, April.
    32. Sandra Eickmeier & Wolfgang Lemke & Massimiliano Marcellino, 2015. "Classical time varying factor-augmented vector auto-regressive models—estimation, forecasting and structural analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 493-533, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
    3. Juho Koistinen & Bernd Funovits, 2022. "Estimation of Impulse-Response Functions with Dynamic Factor Models: A New Parametrization," Papers 2202.00310, arXiv.org, revised Feb 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Forni, Mario & Gambetti, Luca, 2010. "The dynamic effects of monetary policy: A structural factor model approach," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 203-216, March.
    3. Han, Xu, 2015. "Tests for overidentifying restrictions in Factor-Augmented VAR models," Journal of Econometrics, Elsevier, vol. 184(2), pages 394-419.
    4. Jushan Bai & Kunpeng Li & Lina Lu, 2016. "Estimation and Inference of FAVAR Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
    5. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
    6. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    7. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    8. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    9. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
    10. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    11. Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," DSS Empirical Economics and Econometrics Working Papers Series 2011/5, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    13. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    14. Romain Houssa & Lasse Bork & Hans Dewachter, 2008. "Identification of Macroeconomic Factors in Large Panels," Working Papers 1010, University of Namur, Department of Economics.
    15. Piyachart Phiromswad & Takeshi Yagihashi, 2016. "Empirical identification of factor models," Empirical Economics, Springer, vol. 51(2), pages 621-658, September.
    16. Lucia Alessi & Mark Kerssenfischer, 2019. "The response of asset prices to monetary policy shocks: Stronger than thought," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 661-672, August.
    17. Juho Koistinen & Bernd Funovits, 2022. "Estimation of Impulse-Response Functions with Dynamic Factor Models: A New Parametrization," Papers 2202.00310, arXiv.org, revised Feb 2022.
    18. Yohei Yamamoto, 2019. "Bootstrap inference for impulse response functions in factor‐augmented vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 247-267, March.
    19. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
    20. Forni, Mario & Gambetti, Luca & Lippi, Marco & Sala, Luca, 2020. "Common Component Structural VARs," CEPR Discussion Papers 15529, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    High-dimensional factor models; Identification and estimation; Structural impulse responses;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:202:y:2018:i:2:p:125-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.